Простое тиристорное зажигание. Тиристорное устройство зажигания. Схема модуля зажигания

П. АЛЕКСЕЕВ

Тиристорная система зажигания в двигателе автомобиля завоевала столь большую популярность, что сегодня практически нет автолюбителей, не проявляющих к ней интереса.

Принципиальная схема проверенного варианта блока тиристорной системы зажигания изображена на рис. 1.

Рис. 1. Принципиальная схема блока тиристорного зажигания

Штрих-пунктирными линиями выделены составные части блока: источник высокого напряжения, накопитель энергии, формирователь пусковых импульсов, коммутатор зажигания «Электронное - обычное».

Источник высокого напряжения, представляющий собой двухтактный транзисторный преобразователь (однотактный может не обеспечить требуемую скорость заряда накопителя энергии), предназначен для преобразования низкого напряжения (12-14 В) аккумуляторной батареи или генератора автомобиля в относительно высокое постоянное напряжение 380-400 В. Выбор такого напряжения не случаен. Дело в том, что энергия в искре запальной свечи двигателя при тиристорной системе зажигания определяется выражением А=C*U 2 /2 . из которого следует, что чем больше емкость (С) накопителя энергии и выше напряжение (U), тем больше энергия в искре. Повышение напряжения ограничивается пределом электропрочности изоляции первичной обмотки катушки зажигания (400-450 В), а увеличение емкости-временем заряда накопительного конденсатора, которое должно быть меньше длительности межискрового промежутка. Исходя из этого в тиристорной системе зажигания выходное напряжение преобразователя обычно составляет 300-400 В, а емкость накопительного конденсатора равна 1-2 мкФ.

Трансформатор преобразователя напряжения является наиболее трудоемким элементом системы зажигания. В любительских условиях не всегда есть возможность применить трансформаторную сталь, рекомендуемую автором той или иной статьи. Чаще всего используют магнитопроводы с неизвестными характеристиками от разобранных старых трансформаторов, дросселей. Как показал опыт, трансформатор преобразователя напряжения можно выполнить без предварительных расчетов в зависимости от качества трансформаторной стали, но с несколько завышенной мощностью, что только улучшит работу преобразователя.

Данные трансформатора могут быть такими: сечение магнитопровода 3,5-4,5 см2; обмотки I и IV-по 9 витков провода ПЭВ-2 0,47-0,53; обмотки II й III - по 32 витка провода ПЭВ-2 1,0-1,1; обмотка V - 830-880 витков провода ПЭЛШО или ПЭВ-2 0,31-0,35.

Между рядами высоковольтной обмотки, а также между обмотками необходимо прокладывать лакоткань или конденсаторную бумагу. Сборку пластин магнитопровода производят плотно и без зазоров (наличие стыковочных зазоров резко снижает качество трансформатора).

После сборки всего преобразователя с выпрямителем на диодах Д3-Д6 в виде одного узла следует произвести его проверку по следующим параметрам: сила потребляемого тока холостого хода, величина постоянного напряжения на выходе преобразователя, форма кривой напряжения на выходной обмотке V, частота тока преобразователя.

Проверку производят по схеме, приведенной на рис. 2.

Рис. 2. Схема проверки преобразователя напряжения


При правильном включении обмоток I, II, III и IV преобразователь напряжения должен сразу же заработать (слышен слабый звук, создаваемый магнитопроводом трансформатора). Потребляемая преобразователем напряжения сила тока, измеренная амперметром ИП1, должна быть в пределах 0,6-0,8 А (зависит от сечения и марки стали магнитопровода трансформатора).

Выключив питание, резистор R1 (см. рис. 2) удаляют, вход «Y» осциллографа переключают к точкам 3 и 4 (см. рис. 1) выпрямительного моста, а к точкам 1 и 2 подключают конденсатор емкостью 0,25-1,0 мкФ на номинальное напряжение 600 В и параллельно ему вольтметр постоянного тока со шкалой 0-600 В. Подав вновь питание на преобразователь, измеряют постоянное напряжение на выходе выпрямителя. На холостом ходу оно может достигать 480 -550 В (зависит от числа витков обмотки V). Подбирая резистор R5 (начиная с бблыпего номинала), добиваются снижения этого напряжении до 370-420 В. Одновременно на экране осциллографа наблюдают за формой кривой выходного напряжения преобразователя. На холостом ходу она должна соответствовать рис. 3, а (выбросы фронтов могут достигать 25-30% от амплитуды вторичного напряжения), а при подключенном резисторе R5 - кривой, показанной на рис. 3, б (выбросы фронтов снижаются до 10 - 15%). Далее с помощью осциллографа измеряют частоту работы преобразователя - она может быть в пределах 300-800 Гц (более высокая частота, которая может быть при недостаточно тщательной сборке магнитопровода трансформатора, нежелательна, так как ведет к повышенному нагреву трансформатора).

Рис. 3. Эпюры выходного напряжения преобразователя

На этом проверку работы преобразователя напряжения заканчивают.

Диоды Д1 и Д2 ограничивают на уровне 0,6-0,8 В напряжения, закрывающие транзисторы, и тем самым предохраняют эмиттерные переходы от пробоя, а также способствуют уменьшению амплитуды выбросов фронтов вторичного напряжения.

В преобразователе напряжения хорошо работают транзисторы типа П210А, П209, П217 и другие аналогичные им с коэффициентом передачи тока не менее 12-15. Обязательным условием является подбор пары транзисторов с одинаковым коэффициентом передачи тока.

В выпрямителе (Д3-Д6) можно использовать любые кремниевые диоды с Uобр>500-600 В и Iпр>1 А.

Накопитель энергии представляет собой конденсатор емкостью 1-2 мкФ, заряжающийся от выпрямителя преобразователя до напряжения 400-300 В и разряжающийся в момент искрообразования через открывающийся тиристор Д7 и первичную обмотку катушки зажигания. В рассматриваемой системе зажигания роль накопителя энергии выполняет конденсатор С2. Можно использовать любые бумажные конденсаторы (МБГП, МБГО и др.) с номинальным напряжением 500-600 В. Желательно отобрать конденсатор, емкость которого несколько больше номинальной, что положительно скажется на энергии в искре (особенно при напряжении выпрямителя меньше 380 В).

В тиристорной системе зажигания, собранной по схеме, изображенной на рис. 1, кроме основного накопителя энергии (конденсатор С2) предусмотрен «пусковой» конденсатор С3, подключаемый параллельно конденсатору С2 с помощью контактов реле Р1 (напряжение срабатывания реле 6-8 В), которое срабатывает от напряжения, поступающего на зажим «ВК» во время пуска двигателя стартером. Это сделано с целью повышения энергии в искре за счет увеличения емкости накопителя при снижении напряжения аккумуляторной батареи до 7- 9 В.

Напряжение включения тиристора, используемого в системе зажигания, должно быть менее 500 В, а сила тока утечки при рабочем напряжении 400 В не должна превышать 1 мА. К сожалению, напряжение включения тиристоров даже одной партии может значительно отличаться, поэтому весьма желательно произвести проверку тиристора на напряжение включения и ток утечки.

Формирователь пусковых импульсов в тиристорной системе зажигания выполняет самую ответственную функцию: формирует импульсы определенной формы, длительности и амплитуды и подает их на управляющий электрод тиристора точно в момент размыкания контактов прерывателя. Можно считать, что качественные показатели блока тиристорного зажигания определяются тем, насколько совершенен формирователь пусковых импульсов. Он, кроме того, должен обладать высокой помехоустойчивостью ко всякого рода всплескам и перепадам напряжения бортовой сети автомобиля и быть неприхотливым к качеству работы прерывателя и, в первую очередь, дребезгу его контактов. Наилучшие показатели с этой точки зрения обеспечивает трансформаторный формирователь пусковых импульсов. Он состоит из импульсного трансформатора Тр2, диодов Д8 и Д9, конденсатора С4 и резисторов R7, R8. Когда контакты прерывателя замкнуты, ток, текущий через резисторы R7, R8 и первичную обмотку трансформатора, создает запас энергии в обмотках трансформатора, обеспечивающий появление импульса положительной полярности во вторичной обмотке в момент размыкания контактов прерывателя. Это г импульс поступает непосредственно на управляющий электрод тиристора Д7, открывает его и тем самым обеспечивает разряд конденсатора С2 через катушку зажигания.

Для исключения ложных пусковых импульсов, возникающих в момент дребезга контактов прерывателя, первичную обмотку трансформатора шунтируют параллельно соединенные диод Д9 и конденсатор С4. Емкость этого конденсатора, зависящую от данных импульсного трансформатора, подбирают опытным путем. Диод Д8 ограничивает на уровне 0,6-0,8 В отрицательный импульс на обмотке II трансформатора, возникающий при замыкании контактов прерывателя, предохраняя управляющий переход тиристора от пробоя.

Надежное открывание тиристора обеспечивается импульсом с амплитудой порядка 5-7 В и длительностью 100-200 мкс.

Для импульсного трансформатора можно использовать любой Ш-образный магнитопровод сечением 0,7- 1,5 см2. Сначала желательно испытать опытный вариант трансформатора: на каркас наматывают внавал 80- 120 витков провода ПЭВ-0,35-0,5 (обмотка I), а поверх них 35-40 витков такого же провода (обмотка II). После сборки магнитопровода, не стягивая его, к трансформатору (рис. 4)

Рис. 4. Схема проверки и настройки формирователя импульсов

Временно подключают все элементы формирователя пусковых импульсов (Д8, Д9, С4, R7 и R8), управляющий электрод и катод тиристора (анод тиристора остается свободным). В качестве прерывателя в цепь первичной обмотки трансформатора включают контакты Р1/1 электромагнитного реле Р1 (типа РЭС-6 или РЭС-22), обмотку которого через гасящий резистор (Rгac) или понижающий трансформатор подключают к электросети. На контактную группу реле надевают резиновое кольцо для уменьшения дребезга контактов. Такое устройство обеспечивает работу формирователя пусковых импульсов с частотой 100 Гц, соответствующей частоте вращения коленчатого вала четырехцилиндрового двигателя, равной 3000 об/мин. Неминуемый дребезг контактов реле позволяет настроить формирователь пусковых импульсов на работу в более жестких условиях по сравнению с реальным прерывателем (именно по этой причине не следует использовать поляризованное реле, не дающее дребезга контактов). Включив питание, наблюдают на экране осциллографа кривую напряжения на входе тиристора, которая должна иметь вид, приведенный на рис. 5, а, выясняют исходные параметры пускового импульса. Уменьшая или увеличивая число витков вторичной обмотки трансформатора, можно соответственно уменьшить или увеличить амплитуду импульса, а подбором числа витков первичной обмотки и емкости конденсатора С4 - изменять длительность импульса и его «чистоту» с точки зрения защиты от дребезга контактов прерывателя. Как правило, после двух-трех проб удается подобрать данные деталей так, чтобы импульс имел требуемые длительность и амплитуду, а дребезг контактов прерывателя не сказывался на устойчивости работы и форме кривой напряжения пусковых импульсов. По данным, полученным в результате испытаний, изготавливают рабочий вариант импульсного трансформатора.

Рис. 5. Эпюры напряжения пускового импульса (а) и импульса разряда накопительного конденсатора (б)

Коммутатор зажигания «электронное - обычное», собранный на тумблерах или галетном переключателе, обеспечивает быстрый переход с одного вида зажигания на другой (во избежание вывода из строя блока тиристорного зажигания переключение производят только при отключенном источнике питания). Конденсатор С5, подключаемый в режиме обычного зажигания параллельно контактам прерывателя («Пр»), замещает конденсатор, находящийся на корпусе распределителя зажигания(он обязательно должен быть снят или отключен, так как нарушает нормальную работу тиристорной системы зажигания). Выводы проводников, обозначенные ВК, ВКБ, Общ и Пр, подключают к соответствующим зажимам катушки зажигания и прерывателя, а контакты ВКБ и ВК обведенные штрих-пунктирными линиями, служат для подсоединения проводом, ранее соединившихся с одноименными зажимами катушки зажигания.

Полностью собранный блок тиристорного зажигания следует подключить к прерывателю и катушке зажигания со свечой (включенной между высоковольтным выводом и минусом источника питания), а затем, подав на него напряжение, проверить по следующим параметрам: сила потребляемого тока, выходное напряжение выпрямителя, амплитуда и длительность пускового импульса, разрядный импульс накопительного конденсатора.

Сила потребляемого тока нагруженного преобразователя, измеренная амперметром, включенным в цепь питания блока, должна составлять 1,3-1,5 А. Выходное напряжение выпрямителя (на конденсаторе С2), измеренное по схеме, приведенной на рис. 6, должно быть равно напряжению холостого хода или меньше его на 5-7% (иногда до 10%).

Рис. 6. Схема измерения напряжения на накопителе энергии при работающем блоке тиристорного зажигания

Амплитуда и длительность пускового импульса, измеренные осциллографом, должны равняться соответственно 5-7 В и 150-250 мкс. В промежутке между импульсами возникают (в момент замыкания контактов) небольшие помехи с малой амплитудой (не более 0,1-0,2 от амплитуды пускового импульса). Если же просматриваются небольшие «зазубрины» (обычно с частотой работы преобразователя), то следует подобрать емкость конденсатора С1.

Разрядный импульс накопительного конденсатора С2, просматриваемый на экране осциллографа, имеет вид, изображенный на рис. 5, б. Заряд конденсатора должен заканчиваться не позже 2/3 промежутка между импульсами (обычно он заканчивается на 1/3-1/2 промежутка).

Проверенный блок тиристорного зажигания следует оставить в рабочем состоянии на 30-40 мин для контроля за тепловым режимом. За это время трансформатор преобразователя должен нагреваться до температуры, не превышающей 70-80°С (терпит рука), а теплоотводы транзисторов - до 35-45° С.

Конструктивное оформление блока произвольное. Транзисторы преобразователя напряжения крепят на пластинчатых теплоотводах или профилированном дюралюминии толщиной 4-5 мм общей площадью 60-80 см2.

Возможная конструкция блока тиристорной системы зажигания, смонтированного в металлическом корпусе размерами 130X130X60 мм, показана на рис. 7.

Рис. 7. Конструкция блока тиристорной системы зажигания


Размещать блок на автомобиле (под капотом) следует так, чтобы его выходные провода ВКБ, ВК, и «Общ» можно было подключить к соответствующим зажимам катушки зажигания (провод, соединяющий зажим «Общ» катушки зажигания с прерывателем, удаляют). К контактам «ВКБ» и «ВК» колодки блока зажигания подключают провода, ранее стоявшие на одноименных зажимах катушки зажигания.

Рассказать в:
По принципу действия эта система относится к устройствам, в которых энергия, расходуемая на искро-образование, накапливается (в отличие от батарейной и транзисторной систем) не в магнитном поле катушки зажигания, а в электрическом поле специального накопительного конденсатора, который с помощью коммутирующего элемента (тиристора) в определенные моменты подключается к ней.

Рис. 33. Принципиальная электрическая схема конденсаторной (ти-ристорнои) системы зажигания

Принципиальная электрическая схема конденсатор-нон (тиристорной) системы зажигания с непрерывным накоплением энергии (рис. 33) в принципе мало чем отличается от схемы, впервые опубликованной в одном из американских журналов, а также в отечественных изданиях. Основное ее отличие состоит в более тщательном подборе элементов, что значительно повышает эксплуатационную надежность и уменьшает габариты устройства.
В частности, в схеме применены менее мощные транзисторы (П216), изменены номиналы резисторов в их базовых цепях, уменьшены габариты трансформатора, в выпрямителе использованы диоды с обратным напряжением 600 В, применен один мощный тиристор (вместо двух) на большее рабочее напряжение, введены переключатели bl, b2.
Все это позволило разработать более компактную конструкцию, которая находилась в опытной эксплуатации на автомобиле в течение ряда лет. Схема сохраняет работоспособность при колебаниях питающего напряжения в пределах 9-15 В.
Ее можно использовать на любом автомобиле с напряжением питания электрооборудования +12 В. По сравнению со стандартной системой зажигания она не требует никаких дополнительных приборов, кроме электронного блока.
Схема может работать с катушками зажигания типа Б1, Б7, Б7А, Б13, Б21, Б21А, Б117 (автомобиль "Жигули": ВАЗ-2101, 2102, 2103, 21011). Рабочий диапазон температур от -40 до +65° С. Система зажигания состоит из электронного блока ЭБ, катушки зажигания КЗ с вариатором (или без него), контактов прерывателя Пр.
Основой системы является электронный блок, преобразующий сигналы прерывателя в импульсы высокого напряжения с амплитудой 400 В, которые затем поступают на обычную катушку зажигания, повышающую выходное напряжение до 25-30 кВ.
Электронный блок состоит из преобразователя напряжения на транзисторах 77, Т2 и трансформаторе Тр1; высоковольтного выпрямителя на диодах Д1-Д4;
накопительного конденсатора С2; бесконтактного ти-ристорного коммутатора Д6; схемы управления тири-стором Д6, выполненной на конденсаторе СЗ, диодах Д7-Д9 и резисторах r5, r7-r9; двух переключателей bl и b2, предназначенных для быстрого перехода в случае необходимости с электронного зажигания (положение 1) на обычное батарейное (положение 2) и наоборот.
Преобразователь напряжения выполнен по схеме симметричного мультивибратора с индуктивной связью на мощных германиевых транзисторах 77, Т2 с нагрузкой в цепи эмиттера, в качестве которой используется первичная обмотка трансформатора Тр1. Несмотря на то что транзисторы 77, Т2 работают в ключевом режиме (режиме насыщения), на них выделяется значительная мощность в моменты переключения из проводящего состояния в непроводящее и наоборот.
Коллекторные цепи транзисторов Т1, Т2 можно соединить с корпусом прибора. Это позволяет крепить транзисторы непосредственно без изоляционной прокладки на корпусе электронного блока, используя последний в качестве радиатора.
Транзисторы 77, Т2 рассчитаны на кратковременные (около 1 мс) четырехкратные перегрузки по току, возникающие в каждом цикле искрообразования при срыве генерации преобразователя в моменты включения тиристора Д6. Резисторы rl, r2 служат для подачи начального смещения, а резисторы r3, r4 ограничивают ток базы соответствующего транзистора.
трансформатор Тр1 рассчитан так, что коллекторный ток транзисторов 77, Т2 вызывает насыщение его сердечника. Это явление улучшает КПД преобразователя, а также способствует повышению устойчивости его работы в различных условиях эксплуатации авто мобпля. Частота генерации преобразователя - 800 Гц
Выпрямитель преобразователя выполнен по мостовой схеме на силовых диодах Д237В, получает питание от вторичной обмотки Тр1 и рассчитан на максимальное выходное напряжение 500 В. Он работает на нагрузку, состоящую из накопительного конденсатора С2 с малыми токами утечки и резистора r6, предназначенного для разряда конденсатора С2 при выключении питания электронного блока.
Энергия, накопленная в конденсаторе С2, передается в первичную обмотку катушки зажигания при включении тиристора Д6, выполняющего функцию электронного коммутатора. Момент включения тиристора Д6 определяется моментом размыкания контактов прерывателя.
При замкнутых контактах прерывателя тиристор Д6 надежно закрыт отрицательным смещением - 0,7В, образующимся при протекании тока в прямом направлении через диод Д7. Резистор r5 ограничивает величину тока через диод Д7 и "привязывает" управляющий электрод тиристора к нулевому потенциалу. Накопительный конденсатор С2 заряжен в этот момент от выпрямителя до высокого потенциала uВ (см. табл. 4), который зависит от напряжения питающей сети автомобиля.


Когда контакты прерывателя замкнуты, через них протекает ток, определяемый прямым сопротивлением диода Д5 и величиной резисторов r9, rio. В нашем случае ток равен примерно 150 мА, а конденсатор СЗ через диод Д7 и резистор r7 заряжен практически до напряжения +12 В источника питания *.
Как только контакты прерывателя разомкнутся, напряжение, до которого заряжен конденсатор СЗ, прикладывается (в положительной полярности) через диод Д8 и резисторы r9. rio к управляющему электроду тн-ристора Д6. Тиристор открывается, и конденсатор С2 разряжается на первичную обмотку катушки зажигания, что сопровождается возникновением высоковольтного импульса u2макс во вторичной обмотке.
Цепь r8Д9 пропускает отрицательный импульс от первичной обмотки катушки зажигания, который полностью перезаряжает конденсатор СЗ в противоположной полярности, как только открывается тиристор Д6. Этим мгновенно снимается положительное смещение с управляющего электрода тиристора Д6 и исключается возможность многократного переключения последнего, когда контакты прерывателя еще разомкнуты.
Таким образом, благодаря цепочке Р8Д9 положительное напряжение на управляющий электрод тиристора Д6 подается в виде короткого импульса длительностью около 2-3 мкс, что обеспечивает образование лишь одной искры в момент размыкания контактов. Диод Д5 и конденсатор С/ образуют развязывающий фильтр низкой частоты, предотвращающий проникновение помех в цепь питания.


*Постоянная времени заряда конденсатора СЗ выбрана рав-ной 120 мс, чтобы избежать возникновения дополнительного запускающего импульса из-за "дребезга" контактов прерывателя после их замыкания.

В табл. 5 приведена экспериментальная зависимость тока, потребляемого электронным блоком, от числа оборотов коленчатого вала для четырехцилиндрового двигателя при напряжении источника питания 12 В.
Из таблицы можно сделать вывод о принципиальном отличии этой системы (в смысле потребления тока от источника питания) от батарейной и транзисторной систем зажигания.
В самом деле, в батарейной системе зажигания (если вал двигателя неподвижен, а контакты прерывателя замкнуты) ток через первичную обмотку катушки зажигания достигает максимального значения и равен примерно 4 А (потребляемая мощность около 50 Вт). В этих же условиях для транзисторной системы зажигания ток первичной обмотки равен примерно 7 А (потребляемая мощность около 80 Вт).
При увеличении оборотов двигателя ток разрыва уменьшается и среднее значение тока, потребляемого от источника, снижается до 1,5-2 А и 3-4 А соответственно для батарейной и транзисторной систем.
В конденсаторной же системе при неработающем двигателе и любом положении контактов прерывателя потребляемый ток от источника питания равен примерно 0,5 А (потребляемая мощность около 6 Вт). Этот ток увеличивается прямо пропорционально скорости вращения вала, достигая при 6000 об/мин примерно 2 А (потребляемая мощность около 25 Вт).
Помимо очевидной экономичности, конденсаторная система имеет некоторые дополнительные преимущества.
Одно из них состоит в следующем. Если в автомобиле с батарейным (или транзисторным) зажиганием забыли выключить замок зажигания, а контакты прерывателя при этом случайно окажутся замкнутыми, то может выйти из строя катушка зажигания, так как через нее длительное время будет протекать значительный ток. В конденсаторной системе такая ситуация не вызывает никаких вредных последствий, не считая некоторой разрядки аккумуляторной батареи током 0,5-0,6 А.
Другое преимущество заключается в том, что конденсаторная система обеспечивает уверенный запуск двигателя рукояткой при сильно разряженной аккумуляторной батарее, поскольку она потребляет ничтожный ток при неподвижном вале двигателя. Запустить двигатель в таких же условиях при батарейной (или транзисторной) системе зажигания не представляется возможным.


Рис. 34. Схема подключения катушки зажигания без вариатора к конденсаторной системе зажигания (для автомобилей "Жигули" всех моделей)
На рис. 34 приведена правая часть принципиальной схемы электронного блока конденсаторной системы, предназначенной специально для автомобиля "Жигули" всех моделей, которая отличается коммутацией катушки зажигания при переводе системы в режим обычного батарейного зажигания (положение 2). Это обусловлено тем, что система зажигания автомобиля "Жигули" не имеет вариатора в первичной цепи катушки зажигания.
Конденсатор С4 на схемах рис. 33, 34 прн установке переключателей В1 и В2 в положение 2 оказывается включенным параллельно контактам прерывателя и выполняет роль искрогасительного конденсатора. Стандартный же конденсатор при установке электронного блока должен быть отключен.


Рис. 35. Монтажная плата и схема соединений электронного блока конденсаторной системы зажигания
Конструктивно электронный блок выполнен в виде прибора, имеющего габариты 100Х100Х50 мм. Корпус прибора изготовлен из листового материала (сплав АМЦАМ) толщиной 2-3 мм.
Внутри корпуса размещается трансформатор Тр1, конденсаторы С2, С4 и печатная плата, показанная на рис. 35 в натуральную величину. Транзисторы t1, t2 укрепляются винтами МЗ на боковой стенке снаружи корпуса. Там же крепятся переключатели В1 и В2. Резисторы r1-r4 монтируются непосредственно между выводами транзисторов и трансформатора Тр1. Для подключения внешних цепей из корпуса прибора через изоляционную втулку выводится пучок проводов, длина которых зависит от места установки прибора под капотом автомобиля. Прибор крепится жестко (без амортизаторов); должен обеспечиваться хороший тепловой контакт с элементами конструкции автомобиля.
При необходимости транзпсторы П216 можно заменить на П216А, П217А, П217В.
Все резисторы - типа МЛТ или МТ; конденсаторы С2 и С4 - типа МБГО соответственно на рабочее напряжение 500 и 400 В; конденсатор С1 - типа К50-6, а конденсатор СЗ - типа МБМ на рабочее напряжение 160 В. Переключатели В1. В2 - типа ТП2-1 или МТ-2.
Трансформатор Тр1 - тороидального типа, выполнен на сердечнике ОЛ 20/32-10 мм, сечение железа- 0,6 см^2. Обмотки трансформатора имеют следующие данные: w1=1700 витков провода ПЭВ-2 0,18; w2, w3 - по 15 витков ПЭВ-2 0,31, мотать одновременно в два провода; w4, w5 - по 50 витков провода ПЭВ-2 0,78. Намотка трансформатора ведется в одну сторону, последовательность намотки соответствует нумерации обмоток. Обмотки изолируют друг от друга слоем кабельной бумаги. После намотки трансформатор полезно про питать лаком для уменьшения гигроскопичности и увеличения электрической прочности.
Несколько практических рекомендаций. Используя конденсаторную систему зажигания, следует увеличить зазоры свечей зажигания примерно до 1 мм независимо от модели автомобиля. Кроме того, при проведении профилактических работ не надо обильно пропитывать маслом фильц кулачка прерывателя во избежание замасливания его контактов. Выполнение этого условия является гарантией надежной работы системы зажигания.
Установку (или проверку) угла опережения зажигания производят в положении 2 переключателей В1, В2 электронного блока с помощью лампы накаливания, включенной параллельно контактам прерывателя, по обычной методике. После окончания работы переключатели вновь переводят в положение 1 ("электронное зажигание"), а октан-корректором устанавливают опережение зажигания на 1° позже, чем рекомендовано заводом-изготовителем для батарейного зажигания. Объясняется это тем, что выработка искры при электронном зажигании происходит чуть раньше (в самом начале размыкания контактов прерывателя), чем при батарейном. Окончательную корректировку опережения зажигания производят на ходу автомобиля.
Наладка блока сводится к проверке генерации преобразователя напряжения (при работе преобразователя слышен негромкий писк с частотой 700-800 Гц) и контролю потребления тока от источника питания (см. табл. 5) в зависимости от числа оборотов двигателя.
При использовании заведомо исправных деталей и правильной распайке концов трансформатора Тр1 электронный блок начинает работать сразу при установке его на автомобиль и соединении с приборами электрооборудования в соответствии с принципиальными схемами рис. 33, 34.
Следует заметить, что такая системаэлектронного зажигания установлена на автомобиле "Жигули" ВАЗ-2101, который эксплуатируется круглогодично. Об эффективности ее работы можно судить хотя бы по следующим данным. При пробеге свыше 100 тыс. км не было отмечено ни одного отказа системы зажигания, а контакты прерывателя выглядят как новые. За все время работы системы потребовалось лишь один раз (через 50 тыс. км) проверить правильность установки зажигания и зазор между контактами прерывателя. Незначительное изменение зазора было вызвано износом текстолитовой подушечки прерывателя.

Автолюбители изготавливают электронные блоки зажигания, как правило, по классической схеме, состоящей из источника высокого напряжения, накопительного конденсатора и тиристорного ключа. Однако такие устройства имеют ряд существенных недостатков. Первый из них - низкий КПД. Поскольку заряд накопительной емкости можно уподобить заряду конденсатора через резистор, КПД зарядной цепи не превышает 50%. Значит, примерно половина потребляемой преобразователем мощности будет выделяться в виде тепла на транзисторах. Поэтому для них нужны дополнительные теплоотводы.

Второй недостаток состоит в том, что во время разряда конденсатора тиристор закорачивает выход преобразователя и вырабатываемые им колебания срываются.

После разряда накопительной емкости тиристор закрывается, и конденсатор вновь начинает заряжаться плавно нарастающим, от нуля до максимального значения, напряжением с Преобразователя. При больших оборотах двигателя это напряжение может не достичь номинального значения и конденсатор зарядится не полностью. Это приводит к тому, что с увеличением числа оборотов уменьшается энергия искры.

Следующий недостаток объясняется отсутствием стабильности энергии искрообразования при изменении напряжения питания. При запуске двигателя с помощью стартера напряжение аккумуляторной батареи может значительно (до 9-8 В) снижаться. В этом случае блок зажигания выдает слабую искру либо не работает совсем.

Предлагаем описание электронного зажигания, в котором нет указанных недостатков. Работа устройства основана на принципе заряда накопительного конденсатора от стабильного по амплитуде обратного выброса ждущего блокинг-генератора. Величина этого выброса мало зависит от напряжения бортовой сети автомобиля и числа оборотов коленчатого вала двигателя, и, следовательно, энергия искры практически всегда постоянна.

Устройство обеспечивает уровень потенциала на накопительном конденсаторе в пределах 300 ± 30 В при изменении напряжения на аккумуляторной батарее от 7 до 15 В, сохраняя работоспособность в интервале температур -15 - +90°. Предельная частота срабатывания составляет 300 имп/с. Потребляемый ток при f = 200 имп/с не превышает 2 А.

Принципиальная схема электронного зажигания (рис. 1) состоит из ждущего блокинг-генератора на транзисторе V6, трансформатора Т1, цепи формирования запускающих импульсов C3R5, накопительного конденсатора С1, генератора импульсов зажигания на тиристоре V2.

В исходном состоянии, когда контактные пластины прерывателя S1 замкнуты, транзистор V6 закрыт, а конденсатор С3 разряжен. При размыкании контакта он будет заряжаться по цепи R5, RЗ, переход «база - эмиттер» V6. Импульс зарядного тока запускает блокинг-генератор. Передний фронт импульса с обмотки II трансформатора (нижний по схеме вывод) запускает тиристор V2, но, поскольку конденсатор С1 предварительно не был заряжен, на выходе устройства искры не будет.

После того как под действием коллекторного тока V6 произойдет насыщение сердечника трансформатора, блокинг-генератор вновь вернется в ждущий режим. Образующийся при этом выброс напряжения на коллекторе V6, трансформируясь в обмотке III, через диод V3 зарядит конденсатор С1.

При повторном размыкании прерывателя в устройстве произойдут те же процессы с той лишь разницей, что открывшийся передним фронтом импульса тиристор V2 подключит теперь уже заряженный конденсатор к первичной обмотке катушки зажигания. Ток разряда С1 индуцирует во вторичной обмотке бобины высоковольтный импульс.

Устройство нечувствительно к дребезжанию контактных пластин прерывателя. При первом же их размыкании транзистор V6 откроется и останется в этом состоянии до начала насыщения трансформатора независимо от дальнейшего положения прерывателя.

Трансформатор Т1 выполнен на магнитопроводе ШЛ16Х25 с зазором около 50 мк. Обмотка I содержит 60 витков провода ПЭВ-2 1,2, II-60 витков ПЭВ-2 0,31, III - 360 витков ПЭВ-2 0,31. Сердечник трансформатора можно набрать и из Ш-образного железа. Однако из-за неровной обрезки пластин зазор, даже без прокладки, может оказаться большим. В этом случае необходима шлифовка неровностей в местах стыка магнитопровода.

Транзистор КТ805А можно заменить на КТ805Б, но из-за более высокого значения напряжения насыщения на нем будет рассеиваться и несколько большая мощность, что может привести к самозапуску блокинг-генератора при высоких температурах. Поэтому транзистор КТ805Б желательно установить на дополнительном теплоотводе площадью 20 - 30 см 2 .

Вместо диодов Д226Б можно применить КД105Б - КД105Г, КД202К - КД202Н (V1, V3), Д223 (V4).

С1 составлен из двух параллельно соединенных конденсаторов МБГО-1 по 0,5 мкФ на напряжение 500 В. С2 и С3 - МБМ.

Тиристор КУ202Н допустимо заменить на КУ202М или КУ201И, КУ201Л. Поскольку у КУ201 прямое напряжение не превышает 300 В, поэтому напряжение на накопительном конденсаторе снижают до 210 - 230 В путем увеличения его емкости до 2 мкФ. Причем заметного влияния на энергию искры это не оказывает.

Для налаживания устройства нужны авометр и имитатор прерывателя - любое электромагнитное реле, питаемое от звукового – генератора. Реле можно подключить через понижающий трансформатор к осветительной сети. Частота запускающих импульсов будет тогда равна 100 имп/с. С последовательно соединенным диодом частота запуска составит 50 имп/с.

Если детали исправны и выводы трансформатора подсоединены правильно, устройство начинает сразу же работать. Проверяют, чтобы напряжение на конденсаторе С1 составляло 300±30 В при изменении величины питания в указанных выше пределах. Измерять напряжение следует пиковым вольтметром, воспользовавшись схемой, представленной на рисунке 2.

Прибор подключают в точке соединения элементов C1, V2, VЗ и, изменяя величину зазора в сердечнике трансформатора, добиваются необходимого значения напряжения. Если оно заниженное, толщину прокладки увеличивают. При уменьшении зазора напряжение должно падать.

Когда окружающая температура низкая, энергия искры может упасть. В этом случае нужно уменьшить номинал резистора RЗ, поскольку при малом питающем напряжении тиристор V2 может не открыться.

Монтаж устройства выполнен печатным методом на плате размером 95X35 мм, изготовленной из фольгированного гетинакса или стеклотекстолита (рис. 3). Конструктивное выполнение блока электронного зажигания самое различное - в зависимости от имеющегося материала и места установки устройства.

В. БАКОМЧЕВ, г. Бугульма

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.

Смирнов Владимир Фёдорович

Россия, Тверская обл., г. Кимры

E-mail: [email protected]

Web-sait:

При пуске холодного двигателя перед искрообразованием свечи успевают покрыться слоем жидкого диэлектрика - маслянно-бензиновой плёнкой, загрязнённой водой, сажей, молекулами остаточных и атмосферных газов. Чем ниже температура двигателя и выше степень сжатия топливной смеси - толще плёнка. Выступы электродов свечи, имеющие малые радиусы кривизны, под слоем жидкого диэлектрика перестают влиять на снижение пробивного напряжения. Когда свечи «залило», пробоя не происходит вовсе. Это указывает на превалирующее влияние жидкого диэлектрика.

В момент искрообразования в искровом зазоре свечи катушкой зажигания (КЗ), возбуждается электрическое поле, которое неоднородно. Если его напряжённость вблизи выступов электродов с малым радиусом кривизны превышает пороговый уровень, то с этих выступов возникает самостоятельный электрический разряд, начинающийся тёмным разрядом, переходящим в коронный, ток которого должен сначала пробить плёнку жидкого диэлектрика. Немалую роль при этом играют токопроводящие загрязнения в жидком диэлектрике, создающие повышенные значения токов проводимости. В большинстве теорий : «...пробой жидких диэлектриков рассматривается как тепловой процесс, в результате которого в слое жидкого диэлектрика образуются газовые или паровые каналы... При критических значениях напряжённости электрического поля в газовых и паровых каналах начинает развиваться процесс ударной ионизации газа, завершающийся пробоем.». После этого между электродами свечи возникает искровой, затем тлеющий, а если тока достаточно, то и дуговой разряд.

На графике представлена зависимость времени пробоя жидкого диэлектрика от высокого напряжения. Как видим, при времени воздействия электрического поля более 1 мс напряжение пробоя резко уменьшается. Данное явление, обусловленное ростом числа ионных лавин, послужило стимулом к созданию систем конденсаторного многоискрового AEM зажигания.

По мере прогрева двигателя плёнка из жидкого диэлектрика начинает истончаться и деградировать до полного исчезновения - стандартная модель становится неприменимой . Двигатель переходит в нормальный рабочий режим, при этом : « Мощный тепловой толчок, вызывающий ускорение процессов, приводящих к образованию очага сгорания, можно осуществить электрическим разрядом между электродами свечи зажигания при напряжении 8–15 к В. При высоких температурах в канале или шнуре разряда (Т ≥ 10000 ) образуется очаг небольшого объёма. Это означает, что в данном объёме процессы прогрева, распада, ионизации молекул топлива и кислорода и воспламенения происходят столь быстро (через состояное плазмы), что укладываются в период разряда, длительность которого не превышает 10–20 мк с.». Таким образом, в нормальном рабочем режиме достаточна длительность разряда всего 10...20 микросекунд. Очевидно, что энергия разряда должна быть достаточной для создания первоначального очага сгорания, интенсивно инициирующего последующую цепную реакцию процесса воспламенения во всём объёме сжатой топливной смеси.

Схожие данные приводят А. Курченко и А. Синельников : « Сравнительно малая длительность искрового разряда не является недостатком описываемой системы. Как показали исследования, в исправном и правильно рассчитанном двигателе после достижения нормального теплового режима воспламенение рабочей смеси происходит в течение 10...15 мкс, и искровой разряд длительностью свыше 1 мс, имеющий место в батарейной или транзисторной системах зажигания, бесполезен и вызывает лишь эрозию электродов свечей, сокращая их срок службы. Искра длительностью 1,0 мс и более может оказаться полезной лишь при пуске двигателя на переобогащённой смеси, как горячего, так и холодного.».

Альтернативный путь. В стандартной модели на участке от 1 мс до10 мкс сокращение времени пробоя жидкого диэлектрика можно объяснить тем, что мощность коронного разряда находится в квадратичной зависимости от приложенного напряжения. К началу 90-х у меня возникла новая концепция (от лат. conceptio - понимание, система) конденсаторно-тиристорного зажигания, основанная на следующих постулатах:

    Длительный искровой разряд в 1...5 мс полезен только при пуске холодного двигателя, когда на электродах свечей образуется плёнка жидкого диэлектрика. После прогрева двигателя и исчезновения плёнки для воспламенения достаточно первых 10...20 мкс, а оставшийся излишек разряда будет безрезультатно пытаться поджечь уже сгоревшую смесь, да совершать вредоносное действие - разогревать электроды свечей, что на высоких оборотах при высокой мощности разряда может стать причиной калильного зажигания - ограничения числа оборотов.

    При 6000 об/мин = 100 об/сек двухтактного двигателя один оборот происходит за 10 мс. Легко посчитать, что искровой разряд в 1 мс будет происходить на протяжении 36°. Это превосходит угол опережения зажигания, например в 29°, занимая ещё 7° фазы быстрого сгорания. Воспламеняющая способность столь длительного искрового разряда оказывается низкой - его энергия распределена во времени, момент воспламенения точно не определён. Зажигание получается вероятностным. Исключить вероятностный фактор можно единственным способом - сконцентрировав энергию искры в разряде длительностью 10... 20 мкс.

    В конденсаторно-тиристорном электронном зажигании искрообразование происходит только в первом периоде косинусоиды затухающих колебаний ударного LC-контура (КЗ + разрядный конденсатор) - искровой разряд получается коротким, и конденсатор не успевает полностью разрядиться - возникает недобор мощности от преобразователя напряжения. Данный недостаток легко обратить в преимущество, увеличив напряжение заряда конденсатора. При этом мощность разряда возрастёт в квадратичной зависимости от напряжения, при прежней длительности.

    Ёмкость конденсатора следует увеличить, тогда частота затухающих колебаний LC-контура понизится, а длительность разряда - увеличится.

    При одинаковой потребляемой мощности альтернативная система зажигания с конденсатором повышенной ёмкости, заряженным до более высокого напряжения и с малой длительностью разряда за счёт использования низкоомной КЗ, а так же и в силу того, что искрообразование происходит лишь в течение первого периода затухающих колебаний, будет способна сконцентрировать искровой разряд.

    Неотъемлемой частью новой системы зажигания должно стать устройство зимнего пуска двигателя - когда масло загустело, и стартёр может вызвать проседание напряжения до 6 В.

Основное достоинство конденсаторно-тиристорного CDI зажигания определяется первым законом коммутации, утверждающим, что напряжение на конденсаторе не может измениться скачком. Теоретически конденсатор является источником ЭДС, имеющим нулевое внутреннее сопротивление, и способен создать в момент коммутации ток вплоть до бесконечности при нулевом сопротивлении нагрузки.

Пиковая мощность - наибольшее мгновенное значение мощности разряда. В конденсаторно-тиристорном зажигании наибольшее значение пиковой мощности приходится на самые важные - первые 10...20 мкс начала искрообразования, причём данное достоинство естественным образом следует из его принципа действия. По мере разряда конденсатора мгновенная мощность уменьшается. Пиковая мощность разряда - наиважнейшая для высокооборотных и обычных двигателей характеристика зажигания в нормальном рабочем режиме.

Импульсная мощность (мощность в импульсе) - среднее значение мощности за время длительности импульса. Данная характеристика важна в режиме запуска холодного двигателя для пробоя жидкого диэлектрика.

В момент искрообразования открывается тиристор VS и закорачивает выход преобразователя, останавливая его работу. Заряженный конденсатор С5 подключается к первичной обмотке КЗ, образуя с её индуктивностью LC-контур ударного возбуждения, в котором на частоте резонанса зарядом конденсатора С5 возбуждаются затухающие косинусоидальные колебания. В повышающей обмотке КЗ эти колебания, частотой 2...10 кГц (зависит от КЗ), трансформируются в 100...400 раз большее напряжение, и трамблёром направляются свече того цилиндра, где должно произойти воспламенение сжатой топливно-воздушной смеси.

В свече возникает искровой разряд. Энергия электрического поля конденсатора С5 тратится на воспламенение топливной смеси и преобразуется в энергию магнитного поля КЗ. В момент, когда конденсатор C5 полностью разрядится и напряжение на нём уменьшится до нуля ток в цепи достигнет наибольшего значения. Ввиду полного разряда конденсатора ток в цепи начинает уменьшаться, но не прекращается, так как согласно второму закону коммутации, ЭДС самоиндукции КЗ меняет знак и поддерживает прежнее значение тока. Источником энергии становится энергия магнитного поля КЗ, а конденсатор становится нагрузкой.

Ток, проходя через разряженный конденсатор, начинает его заряжать. Поскольку направление тока осталось прежним, тиристор остаётся открытым, но полярность напряжения на конденсаторе меняется. По мере заряда конденсатора напряжение на нём возрастает, а ток в цепи убывает. Энергия магнитного поля КЗ уменьшается - она расходуется на поддержание искрового разряда и на заряд конденсатора.

Когда ток в цепи станет меньше тока удержания, тиристор выключится. К этому моменту почти вся энергия магнитного поля, за минусом израсходованной на поддержание искрового разряда, запасается в электрическом поле конденсатора, напряжение на нём достигает максимума, но в противоположной полярности.

Снова начинается разряд конденсатора, но направление разрядного тока меняется на противоположное. Теперь цепь LC-контура замыкает динамическое сопротивление открытых диодов VD4...VD7 моста - преобразователь всё ещё не работает. Когда конденсатор разрядится, динамическое сопротивление диодов моста увеличится, цепь LC-контура окончательно разорвётся - искрообразование закончится. Преобразователь запустится на рабочей частоте (18...32 кГц) и полностью зарядит ёмкость С5, после чего потребление тока уменьшится - преобразователь перейдёт в режим холостого хода до следующего искрообразования.

Таким образом, в настоящем зажигании искрообразование происходит на протяжении первого периода колебаний LC-контура, а тиристор открыт только в первую 1/2 данного периода.

Устройство зимнего пуска двигателя - диод VD1 и конденсатор С1. При пуске холодного двигателя зимой стартёр может вызвать проседание напряжения аккумулятора до 6 В, напряжение на ёмкости С1 становится выше входного, диод VD1 закрывается, и начинается автономное питание устройства зарядом ёмкости С1. Величина ёмкости С1 должна быть десятки тысяч микрофарад, однако практика показала, что вполне достаточно 4700 мкФ.

Транзисторный преобразователь напряжения - модернизированная схема Ройера работает на частоте около 32 кГц и гарантированно успевает зарядить при 6000 об/мин конденсатор C5 ёмкостью 2 мкФ до напряжения около 600 В, потребляя при этом ток не более 2,5 А. На низких оборотах напряжение ещё выше, а ток потребления около 0,7 А. Транзисторам необходимы радиаторы - алюминиевые пластины 80х80х3 мм, которые склеены торцами через изолятор цианоакриловым клеем и размещены в корпусе с отверстиями так, что для охлаждения воздухом открыты все поверхности. Схемотехника преобразователя с одной базовой обмоткой , коммутируемой диодами, выгодно отличается тем, что открытый коммутирующий диод работает как стабистор, предотвращая зенеровский пробой обратносмещённого перехода база-эмиттер закрытого транзистора, что повышает КПД. В схеме реализован нелинейный базовый резистор на лампе накаливания EL. В холодном состоянии сопротивление её нити до десяти раз меньше, чем в горячем. При начальном пуске величина базового тока выше, чем в рабочем режиме, и запуск характеризуется быстрым нарастанием неустойчивости, заканчивающейся автогенерацией прямоугольных колебаний. Лампа накаливания светится в 1/2 накала и является индикатором: работает преобразователь или нет. Зажигание устойчиво работает и на более 7000 об/мин, однако напряжение на конденсаторе начинает cнижаться.

Повышенное напряжение обусловило выбор тиристора классом не менее 9 (900 В). Запуск тиристора осуществляется разрядом ёмкости С2 через негатрон - фототранзистор оптрона U1, работающий в лавинном режиме . Параметры зарядной цепи R4, VD8 выбраны так, чтобы ограничение заряда ёмкости С2 наступало выше 8000 об/мин. VD8 - стабилизатор напряжения 51 В, а R4 - источник тока. Данная схемотехника позволяет импульсно запускать любые тиристоры, обладает исключительно малой задержкой запуска, хорошей температурной стабильностью, высокой чувствительностью к запуску, оптическим разделением цепей входа и выхода, причём - сверхэкономно.

Универсальность настоящего конденсаторно-тиристорного CDI электронного зажигания - возможность работы как от прерывателя, так и от автомобильного датчика Холла. При размыкании контактов прерывателя времязадающая цепь R3, С4, R6 формирует токовый импульс для светодиода оптрона U1, заряжающий ёмкость С4. При замыкании контактов ёмкость С4 разряжается через сопротивление резистора R6 - формируется защитный временной интервал от «дребезга». У автомобильного датчика Холла токовый импульс имеет отрицательную полярность, поэтому цепь: диод VD9 + светодиод необходимо подключить так, как изображено на схеме перемычками зелёного цвета.

Необязательное тестирование осциллографом. Необходимо изготовить делитель напряжения 1/100 из 2 Вт резистора - 1 МОм и резистора 0,25 Вт - 10 кОм. Вход делителя подключают параллельно тиристору VS, а выход - к открытому входу осциллографа в режиме непрерывной развёртки. Вместо прерывателя подключают простейший самодельный тест-генератор прямоугольных импульсов с регулируемой частотой от единиц до 250-300 Гц, имитирующий прерыватель с помощью транзисторного ключа. Тест-генератору необходим металлический корпус-экран без щелей и короткий экранированный провод - выход. Внутри корпуса - должен быть RC-фильтр питания.

К зажиганию подключить КЗ и свечу. Включаем осциллограф. При выключенном тест-генераторе подаём питание 13, 8 В на зажигание. Смотрим на нить лампы EL, если светится - преобразователь работает. Осциллограф должен показывать напряжение более 600 В. Теперь включаем тест-генератор. В свече должны появиться искровые разряды. Вращая ручку регулятора частоты тест-генератора надо убедиться, что до частоты 200 Гц напряжение на тиристоре (конденсаторе С5) перед искрообразованием имеет вершину на уровне более 600 В. При дальнейшем увеличении частоты длительность вершины будет уменьшаться, затем импульсы станут напоминать пилу - напряжение на ёмкости С5 станет уменьшаться.

Теперь вместо свечи надо создать воздушный разрядный промежуток миллиметров в 10 и проверить на пробой во всём диапазоне частот. Постепенно зазор надо увеличивать до тех пор, пока не прекратится пробой. Так можно узнать длину искрового разряда на воздухе. Хорошую КЗ во время таких испытаний не пробъёт, а плохой - туда и дорога. Запомните производителя и в дальнейшем игнорируйте его КЗ. Длина искрового разряда на воздухе раз в 11 превышает его длину в сжатой топливной смеси, причём чем выше степень сжатия - тем в большее. Таким образом можно оценить максимум зазора в свече, который можно установить.

Ток через тиристор во время искрообразования. Осциллографом измеряем период Т колебаний LC-контура ударного возбуждения. Характеристическое сопротивление LC-контура определяется выражением: ρ = Т/2πС. Величину тока находим с помощью закона Ома: I = U/ρ = U2πC/T, где U = 600 В, С - ёмкость конденсатора С5 = 2мкФ, а 2π = 6,28.

При Т = 100 мкс - ток около 75 А. На частоте искрообразования 200 Гц время открытого состояния тиристора как минимум в 25 раз меньше закрытого, что даёт средний ток всего 3 А. Тиристор Т132-50-9-4 имеет допустимый средний ток в открытом состоянии 50 А, что обеспечивает многократную параметрическую избыточность и надёжность.

Настоящее конденсаторно-тиристорное CDI зажигания - разработка 90-х. Неоднократно оно демонстрировало чудеса - после установки на дымящий автомобиль, не только исчезал дым, но и показатель СО оказывался ниже нормы. Устройство обладает высокой надёжностью, так как каждый из его компонентов используется в комфортной для него области безопасной работы.

Из-за высокого уровня импульсных помех в мировом автопроме сложилось негативное отношение к конденсаторно-тиристорным CDI системам электронного зажигания. Их используют исключительно на гоночных автомобилях или на некоторых лодочных моторах.

Обязательно соблюдайте правила техники электробезопасности, так как в устройстве имеются крайне опасные напряжения!

Литература

    Электротехнический справочник. В 3-х т. Т. 1. Общие вопросы. Электротехнические материалы/ Под общ. Ред. Профессоров МЭИ В. Г. Герасимова, П. Г. Грудинского, Л. А. Жукова и др. - 6-е изд., испр. и доп. - М.; Энергия, 1980. - 520 с., ил.

    Двигатели внутреннего сгорания: Теория поршневых и комбинированных двигателей. Учебник для втузов по специальности "Двигатели внутреннего сгорания"/ Д. Н. Вырубов, Н. А. Иващенко, В. И. Ивин и др.; Под ред А. С. Орлина, М. Г. Круглова. - 4-е изд., перераб. И доп. - М.: Машиностроение, 1983. - 372 с., ил.

По принципу действия эта система относится к устройствам, в которых энергия, расходуемая на искро-образование, накапливается (в отличие от батарейной и транзисторной систем) не в магнитном поле катушки зажигания, а в электрическом поле специального накопительного конденсатора, который с помощью коммутирующего элемента (тиристора) в определенные моменты подключается к ней.

Рис. 1. Принципиальная электрическая схема конденсаторной (ти-ристорнои) системы зажигания

Принципиальная электрическая схема конденсатор-нон (тиристорной) системы зажигания с непрерывным накоплением энергии (рис. 33) в принципе мало чем отличается от схемы, впервые опубликованной в одном из американских журналов, а также в отечественных изданиях. Основное ее отличие состоит в более тщательном подборе элементов, что значительно повышает эксплуатационную надежность и уменьшает габариты устройства.
В частности, в схеме применены менее мощные транзисторы (П216), изменены номиналы резисторов в их базовых цепях, уменьшены габариты трансформатора, в выпрямителе использованы диоды с обратным напряжением 600 В, применен один мощный тиристор (вместо двух) на большее рабочее напряжение, введены переключатели Bl, B2.
Все это позволило разработать более компактную конструкцию, которая находилась в опытной эксплуатации на автомобиле в течение ряда лет. Схема сохраняет работоспособность при колебаниях питающего напряжения в пределах 9-15 В.
Ее можно использовать на любом автомобиле с напряжением питания электрооборудования +12 В. По сравнению со стандартной системой зажигания она не требует никаких дополнительных приборов, кроме электронного блока.
Схема может работать с катушками зажигания типа Б1, Б7, Б7А, Б13, Б21, Б21А, Б117 (автомобиль "Жигули": ВАЗ-2101, 2102, 2103, 21011). Рабочий диапазон температур от -40 до +65° С. Система зажигания состоит из электронного блока ЭБ, катушки зажигания КЗ с вариатором (или без него), контактов прерывателя Пр.
Основой системы является электронный блок, преобразующий сигналы прерывателя в импульсы высокого напряжения с амплитудой 400 В, которые затем поступают на обычную катушку зажигания, повышающую выходное напряжение до 25-30 кВ.
Электронный блок состоит из преобразователя напряжения на транзисторах 77, Т2 и трансформаторе Тр1; высоковольтного выпрямителя на диодах Д1-Д4;
накопительного конденсатора С2; бесконтактного ти-ристорного коммутатора Д6; схемы управления тири-стором Д6, выполненной на конденсаторе СЗ, диодах Д7-Д9 и резисторах R5, R7-R9; двух переключателей Bl и B2, предназначенных для быстрого перехода в случае необходимости с электронного зажигания (положение 1) на обычное батарейное (положение 2) и наоборот.
Преобразователь напряжения выполнен по схеме симметричного мультивибратора с индуктивной связью на мощных германиевых транзисторах 77, Т2 с нагрузкой в цепи эмиттера, в качестве которой используется первичная обмотка трансформатора Тр1. Несмотря на то что транзисторы 77, Т2 работают в ключевом режиме (режиме насыщения), на них выделяется значительная мощность в моменты переключения из проводящего состояния в непроводящее и наоборот.
Коллекторные цепи транзисторов Т1, Т2 можно соединить с корпусом прибора. Это позволяет крепить транзисторы непосредственно без изоляционной прокладки на корпусе электронного блока, используя последний в качестве радиатора.
Транзисторы 77, Т2 рассчитаны на кратковременные (около 1 мс) четырехкратные перегрузки по току, возникающие в каждом цикле искрообразования при срыве генерации преобразователя в моменты включения тиристора Д6. Резисторы Rl, R2 служат для подачи начального смещения, а резисторы R3, R4 ограничивают ток базы соответствующего транзистора.
трансформатор Тр1 рассчитан так, что коллекторный ток транзисторов 77, Т2 вызывает насыщение его сердечника. Это явление улучшает КПД преобразователя, а также способствует повышению устойчивости его работы в различных условиях эксплуатации авто мобпля. Частота генерации преобразователя - 800 Гц
Выпрямитель преобразователя выполнен по мостовой схеме на силовых диодах Д237В, получает питание от вторичной обмотки Тр1 и рассчитан на максимальное выходное напряжение 500 В. Он работает на нагрузку, состоящую из накопительного конденсатора С2 с малыми токами утечки и резистора R6, предназначенного для разряда конденсатора С2 при выключении питания электронного блока.
Энергия, накопленная в конденсаторе С2, передается в первичную обмотку катушки зажигания при включении тиристора Д6, выполняющего функцию электронного коммутатора. Момент включения тиристора Д6 определяется моментом размыкания контактов прерывателя.
При замкнутых контактах прерывателя тиристор Д6 надежно закрыт отрицательным смещением - 0,7В, образующимся при протекании тока в прямом направлении через диод Д7. Резистор R5 ограничивает величину тока через диод Д7 и "привязывает" управляющий электрод тиристора к нулевому потенциалу. Накопительный конденсатор С2 заряжен в этот момент от выпрямителя до высокого потенциала UВ (см. табл. 4), который зависит от напряжения питающей сети автомобиля.

Когда контакты прерывателя замкнуты, через них протекает ток, определяемый прямым сопротивлением диода Д5 и величиной резисторов R9, RIO. В нашем случае ток равен примерно 150 мА, а конденсатор СЗ через диод Д7 и резистор R7 заряжен практически до напряжения +12 В источника питания *.
Как только контакты прерывателя разомкнутся, напряжение, до которого заряжен конденсатор СЗ, прикладывается (в положительной полярности) через диод Д8 и резисторы R9. RIO к управляющему электроду тн-ристора Д6". Тиристор открывается, и конденсатор С2 разряжается на первичную обмотку катушки зажигания, что сопровождается возникновением высоковольтного импульса U2макс во вторичной обмотке.
Цепь R8Д9 пропускает отрицательный импульс от первичной обмотки катушки зажигания, который полностью перезаряжает конденсатор СЗ в противоположной полярности, как только открывается тиристор Д6. Этим мгновенно снимается положительное смещение с управляющего электрода тиристора Д6 и исключается возможность многократного переключения последнего, когда контакты прерывателя еще разомкнуты.
Таким образом, благодаря цепочке Р8Д9 положительное напряжение на управляющий электрод тиристора Д6 подается в виде короткого импульса длительностью около 2-3 мкс, что обеспечивает образование лишь одной искры в момент размыкания контактов. Диод Д5 и конденсатор С/ образуют развязывающий фильтр низкой частоты, предотвращающий проникновение помех в цепь питания.

*Постоянная времени заряда конденсатора СЗ выбрана рав-ной 120 мс, чтобы избежать возникновения дополнительного запускающего импульса из-за "дребезга" контактов прерывателя после их замыкания.

В табл. 5 приведена экспериментальная зависимость тока, потребляемого электронным блоком, от числа оборотов коленчатого вала для четырехцилиндрового двигателя при напряжении источника питания 12 В.
Из таблицы можно сделать вывод о принципиальном отличии этой системы (в смысле потребления тока от источника питания) от батарейной и транзисторной систем зажигания.
В самом деле, в батарейной системе зажигания (если вал двигателя неподвижен, а контакты прерывателя замкнуты) ток через первичную обмотку катушки зажигания достигает максимального значения и равен примерно 4 А (потребляемая мощность около 50 Вт). В этих же условиях для транзисторной системы зажигания ток первичной обмотки равен примерно 7 А (потребляемая мощность около 80 Вт).
При увеличении оборотов двигателя ток разрыва уменьшается и среднее значение тока, потребляемого от источника, снижается до 1,5-2 А и 3-4 А соответственно для батарейной и транзисторной систем.
В конденсаторной же системе при неработающем двигателе и любом положении контактов прерывателя потребляемый ток от источника питания равен примерно 0,5 А (потребляемая мощность около 6 Вт). Этот ток увеличивается прямо пропорционально скорости вращения вала, достигая при 6000 об/мин примерно 2 А (потребляемая мощность около 25 Вт).
Помимо очевидной экономичности, конденсаторная система имеет некоторые дополнительные преимущества.
Одно из них состоит в следующем. Если в автомобиле с батарейным (или транзисторным) зажиганием забыли выключить замок зажигания, а контакты прерывателя при этом случайно окажутся замкнутыми, то может выйти из строя катушка зажигания, так как через нее длительное время будет протекать значительный ток. В конденсаторной системе такая ситуация не вызывает никаких вредных последствий, не считая некоторой разрядки аккумуляторной батареи током 0,5-0,6 А.
Другое преимущество заключается в том, что конденсаторная система обеспечивает уверенный запуск двигателя рукояткой при сильно разряженной аккумуляторной батарее, поскольку она потребляет ничтожный ток при неподвижном вале двигателя. Запустить двигатель в таких же условиях при батарейной (или транзисторной) системе зажигания не представляется возможным.

Рис. 2. Схема подключения катушки зажигания без вариатора к конденсаторной системе зажигания (для автомобилей "Жигули" всех моделей)
На рис. 34 приведена правая часть принципиальной схемы электронного блока конденсаторной системы, предназначенной специально для автомобиля "Жигули" всех моделей, которая отличается коммутацией катушки зажигания при переводе системы в режим обычного батарейного зажигания (положение 2). Это обусловлено тем, что система зажигания автомобиля "Жигули" не имеет вариатора в первичной цепи катушки зажигания.
Конденсатор С4 на схемах рис. 33, 34 прн установке переключателей В1 и В2 в положение 2 оказывается включенным параллельно контактам прерывателя и выполняет роль искрогасительного конденсатора. Стандартный же конденсатор при установке электронного блока должен быть отключен.

Рис. 3. Монтажная плата и схема соединений электронного блока конденсаторной системы зажигания
Конструктивно электронный блок выполнен в виде прибора, имеющего габариты 100Х100Х50 мм. Корпус прибора изготовлен из листового материала (сплав АМЦАМ) толщиной 2-3 мм.
Внутри корпуса размещается трансформатор Тр1, конденсаторы С2, С4 и печатная плата, показанная на рис. 35 в натуральную величину. Транзисторы T1, T2 укрепляются винтами МЗ на боковой стенке снаружи корпуса. Там же крепятся переключатели В1 и В2. Резисторы R1-R4 монтируются непосредственно между выводами транзисторов и трансформатора Тр1. Для подключения внешних цепей из корпуса прибора через изоляционную втулку выводится пучок проводов, длина которых зависит от места установки прибора под капотом автомобиля. Прибор крепится жестко (без амортизаторов); должен обеспечиваться хороший тепловой контакт с элементами конструкции автомобиля.
При необходимости транзпсторы П216 можно заменить на П216А, П217А, П217В.
Все резисторы - типа МЛТ или МТ; конденсаторы С2 и С4 - типа МБГО соответственно на рабочее напряжение 500 и 400 В; конденсатор С1 - типа К50-6, а конденсатор СЗ - типа МБМ на рабочее напряжение 160 В. Переключатели В1. В2 - типа ТП2-1 или МТ-2.
Трансформатор Тр1 - тороидального типа, выполнен на сердечнике ОЛ 20/32-10 мм, сечение железа- 0,6 см^2. Обмотки трансформатора имеют следующие данные: w1=1700 витков провода ПЭВ-2 0,18; w2, w3 - по 15 витков ПЭВ-2 0,31, мотать одновременно в два провода; w4, w5 - по 50 витков провода ПЭВ-2 0,78. Намотка трансформатора ведется в одну сторону, последовательность намотки соответствует нумерации обмоток. Обмотки изолируют друг от друга слоем кабельной бумаги. После намотки трансформатор полезно про питать лаком для уменьшения гигроскопичности и увеличения электрической прочности.
Несколько практических рекомендаций. Используя конденсаторную систему зажигания, следует увеличить зазоры свечей зажигания примерно до 1 мм независимо от модели автомобиля. Кроме того, при проведении профилактических работ не надо обильно пропитывать маслом фильц кулачка прерывателя во избежание замасливания его контактов. Выполнение этого условия является гарантией надежной работы системы зажигания.
Установку (или проверку) угла опережения зажигания производят в положении 2 переключателей В1, В2 электронного блока с помощью лампы накаливания, включенной параллельно контактам прерывателя, по обычной методике. После окончания работы переключатели вновь переводят в положение 1 ("электронное зажигание"), а октан-корректором устанавливают опережение зажигания на 1° позже, чем рекомендовано заводом-изготовителем для батарейного зажигания. Объясняется это тем, что выработка искры при электронном зажигании происходит чуть раньше (в самом начале размыкания контактов прерывателя), чем при батарейном. Окончательную корректировку опережения зажигания производят на ходу автомобиля.
Наладка блока сводится к проверке генерации преобразователя напряжения (при работе преобразователя слышен негромкий писк с частотой 700-800 Гц) и контролю потребления тока от источника питания (см. табл. 5) в зависимости от числа оборотов двигателя.
При использовании заведомо исправных деталей и правильной распайке концов трансформатора Тр1 электронный блок начинает работать сразу при установке его на автомобиль и соединении с приборами электрооборудования в соответствии с принципиальными схемами рис. 33, 34.
Следует заметить, что такая система"электронного зажигания установлена на автомобиле "Жигули" ВАЗ-2101, который эксплуатируется круглогодично. Об эффективности ее работы можно судить хотя бы по следующим данным. При пробеге свыше 100 тыс. км не было отмечено ни одного отказа системы зажигания, а контакты прерывателя выглядят как новые. За все время работы системы потребовалось лишь один раз (через 50 тыс. км) проверить правильность установки зажигания и зазор между контактами прерывателя. Незначительное изменение зазора было вызвано износом текстолитовой подушечки прерывателя.

Предупреждение. Тахометр автомобиля "Жигули" ВАЗ-2103 при использовании конденсаторной (или транзисторной) системы зажигания работать не будет, так как амплитуда импульсов, поступающих на него с контактов прерывателя, в этом случае равна 12 В.