Что такое вязкость? Единицы измерения вязкости. Что такое вязкость жидкости В каких единицах измеряется вязкость жидкости

Вязкость жидкости может быть измерена несколькими способами с помощью устройств, называемых вискозиметрами. Такие приборы измеряют время, затраченное веществом на перемещение или время необходимое объекту с заданным размером и плотностью пройти через жидкость. Единицами измерения для этого параметра является Паскаль в квадрате.

Факторы, влияющие на вязкость

Как правило, жидкости, состоящие из больших молекул, будут иметь более высокую вязкость. Это особенно хорошо проявляется на примере длинных цепочечных веществ, которые являются полимерами или более тяжелыми углеводородными соединениями. Такие молекулы, как правило, перекрывают друг с друга, препятствуя движению через них.

Другим важным фактором является то, как молекулы взаимодействуют друг с другом. Полярные соединения могут образовывать водородные связи, которые удерживают отдельные молекулы вместе, увеличивая общее сопротивление потоку или движению. Хотя молекула воды и является полярной, она имеет низкую вязкость в связи с тем, что ее молекулы достаточно малы. Наиболее вязкие жидкости, как правило, те, которые имеют растянутые молекулы или сильную полярность. Примерами могут служить глицерин и пропиленгликоль.

Температура оказывает большое влияние на вязкость. Измерения свойств жидкостей всегда даются в зависимости от температуры. В жидкостях вязкость уменьшается с ростом температуры. Это можно видеть при нагревании сиропа или меда. Так происходит потому, что молекулы движутся быстрее и, следовательно, меньше времени контактируют друг с другом. Вязкость газов, напротив, увеличивается с ростом температуры. Это происходит потому, что молекулы движутся быстрее и происходит больше столкновений между ними. Таким образом увеличивается плотность потока.

Важность для промышленности

Сырая нефть часто перемещается на большие расстояния между регионами с разной температурой. Поэтому скорость потока и давление меняется с течением времени. Нефть, которая течет через Сибирь, является более вязкой, в трубопроводах Персидского залива. В связи с отличиями в температуре внешней среды разными должны быть и давления в трубах, чтобы заставлять ее течь. Для решения этой проблемы в трубы сначала заливается специальное масло, которое обладает практически нулевым коэффициентом внутреннего сопротивления. Таким способом ограничивается контакт нефти с внутренней поверхностью труб. Вязкость масла также меняется при перепаде температуры. Чтобы улучшить его характеристики в масло добавляют полимеры, которые препятствуют его загустению и смешиванию

Жидкость определяют как физическое тело, способное менять свою форму при сколь угодно малом воздействии на него. Обычно различают два основных вида жидкостей: капельные и газообразные. Капельные жидкости - это жидкости в обычном понимании: вода, керосин, нефть, масло и так далее. Газообразные жидкости - это газы, которые в обычных условиях являются, например, такими газообразными веществами, как воздух, азот, пропан, кислород.

Данные вещества различаются по молекулярной структуре и виду взаимодействия молекул между собой. Однако, с точки зрения механики, они являются сплошными средами. И в силу этого, для них определены некоторые общие механические характеристики: плотность и удельный вес; а также основные сжимаемость, сопротивление растяжению, силы и вязкость.

Под вязкостью понимают свойство оказывать сопротивление скольжению или сдвигу его слоев друг относительно друга. Суть этого понятия заключается в появлении между различными слоями внутри жидкости при их относительном движении. Различают понятия «динамическая вязкость жидкости» и ее «кинетическая вязкость». Далее рассмотрим подробнее, в чем состоит отличие этих понятий.

Основные понятия и размерность

Сила внутреннего трения F, возникающая между движущимися друг относительно друга соседними слоями обобщенной жидкости, прямо пропорциональна скорости движения слоев и площади их соприкосновения S. Эта сила действует в направлении, перпендикулярном движению, и аналитически выражается уравнением Ньютона

F=μS (∆V)/ (∆n),

где (∆V)/ (∆n)=GV — градиент скорости в направлении нормали к движущимся слоям.

Коэффициент пропорциональности μ - есть динамическая вязкость или просто вязкость обобщенной жидкости. Из уравнения Ньютона он равен

В физической системе измерения единицу вязкости определяют как вязкость среды, в которой при единичном градиенте скорости GV = 1 см/сек на каждый квадратный сантиметр слоя действует сила трения в 1 дин. Соответственно и размерность единицы в данной системе выражается в дин∙сек∙см^(-2) = г∙см^(-1)∙сек^(-1).

Эта единица измерения динамической вязкости называется пуазом (П).

1 П = 0,1 Па∙с = 0,0102 кгс∙с∙м^(-2) .

Применяются и более мелкие единицы, именно: 1 П = 100 сП (сантипуаз) = 1000 мП (миллипуаз) = 1000000 мкП (микропуаз). В технической системе за единицу вязкости принимают величину кгс∙с∙м^(-2) .

В международной системе единицу вязкости определяют как вязкость среды, в которой при единичном градиенте скорости GV = 1 м/с на 1 м на каждый квадратный метр слоя жидкости действует сила трения в 1 Н (ньютон). Размерность величины μ в выражается в кг∙м^(-1)∙с^(-1).

Кроме такой характеристики, как динамическая вязкость, для жидкостей вводится понятие кинематической вязкости как отношение коэффициента μ к плотности жидкости. Величина коэффициента кинематической вязкости измеряется в стоксах (1ст = 1 см^(2)/с).

Коэффициент вязкости численно равен количеству движения, переносимому в движущемся газе за единицу времени в направлении, перпендикулярном движению, через единицу площади, когда скорость движения отличается на единицу скорости в слоях газа, отстоящих на единицу длины. Коэффициент вязкости зависит от рода и состояния вещества (температуры и давления).

Динамическая вязкость и кинематическая вязкость жидкостей и газов в большой степени зависят от температуры. При этом отмечено, что оба этих коэффициента убывают с возрастанием температуры для капельных жидкостей и, наоборот, возрастают при повышении температуры - для газов. Отличие этой зависимости можно объяснить физической природой взаимодействия молекул в капельных жидкостях и газах.

Физический смысл

С точки зрения молекулярно-кинетической теории, явление вязкости для газов заключается в том, что в движущейся среде вследствие хаотического движения молекул происходит выравнивание скоростей различных слоев. Так, если первый слой движется в некотором направлении быстрее, чем соседний с ним второй слой, то из первого слоя во второй переходят более быстрые молекулы, и наоборот.

Поэтому первый слой стремится ускорить движение второго слоя, а второй — замедлить движение первого. Таким образом, общее количество движения первого слоя будет уменьшаться, а второго — увеличиваться. Получаемое при этом изменение количества движения характеризуется коэффициентом вязкости для газов.

В капельных жидкостях, в отличие от газов, внутреннее трение в большей мере определяется действием межмолекулярных сил. И, поскольку расстояния между молекулами капельной жидкости невелики по сравнению с газообразными средами, то силы взаимодействия молекул при этом - значительны. Молекулы жидкости, как и молекулы твердых тел, колеблются вблизи положений равновесия. Однако в жидкостях эти положения не являются стационарными. По прошествии некоторого промежутка времени молекула жидкости резко переходит в новое положение. При этом время, в течение которого положение молекулы в жидкости не изменяется, называют временем ее «оседлой жизни».

Силы межмолекулярного взаимодействия существенно зависят от вида жидкости. Если вязкость вещества мала, то его называют "текучим", так как коэффициент текучести и динамическая вязкость жидкости - обратно пропорциональные величины. И наоборот, вещества с большим коэффициентом вязкости могут обладать механической твердостью, как, например, смола. Вязкость вещества при этом существенно зависит как от состава примесей и их количества, так и от температуры. При увеличении температуры величина времени «оседлой жизни» уменьшается, вследствие чего растет подвижность жидкости и уменьшается вязкость вещества.

Явление вязкости, как и другие явления молекулярного переноса (диффузия и теплопроводность), является приводящим к достижению равновесного состояния, отвечающего максимуму энтропии и минимуму свободной энергии.

ВЯЗКОСТЬ, свойство жидкости (или газа) оказывать сопротивление течению.

Вязкость рассматривают также как одно из переноса явлений, определяющее диссипацию энергии при деформации среды. Вязкость твёрдых тел обладает рядом особенностей и рассматривается обычно отдельно (смотри Внутреннее трение).

При ламинарном движении жидкости между двумя плоскопараллельными пластинами, одна из которых неподвижна, а другая движется со скоростью ν, молекулярный слой, непосредственно примыкающий к нижней пластине, остаётся неподвижным, а слой, примыкающий к верхней пластине, будет двигаться с максимальный скоростью (рис.). Течение жидкости характеризуется градиентом скорости γ?= dv/dz, указывающим на быстроту изменения скорости от слоя к слою в направлении, перпендикулярном движению жидкости. Если скорость изменяется линейно, то γ?= v/d, где d - расстояние между пластинами. Величину γ называют также скоростью сдвига.

Согласно основному закону вязкого течения, установленному И. Ньютоном (опубликован в 1687), напряжение сдвига τ = F/S, вызывающего течение жидкости, пропорционально градиенту скорости течения: τ = ηγ?. Коэффициентом пропорциональности η называется коэффициент динамической вязкости, или просто вязкость. Он характеризует сопротивление жидкости течению. Вязкость также можно рассматривать как меру энергии, рассеиваемой в форме теплоты в процессе течения жидкости. Рассеяние энергии происходит вследствие переноса количества движения. Величины коэффициента вязкости и мощности W, рассеиваемой в единице объёма за счёт вязкости, связаны соотношением: W = ηγ? 2 .

Соотношение, установленное Ньютоном, справедливо только в том случае, когда η не зависит от скорости сдвига. Среды, в которых выполняется это условие, называются ньютоновскими (смотри Ньютоновская жидкость).

Единицей измерения динамической вязкости в СИ является Па·с [в СГС - пуаз (дин·с/см 2): 1 пуаз = 0,1 Па·с]. Величина φ= 1/η, обратная вязкости, называется текучестью. Также часто рассматривают кинематическую вязкость ν = η/ρ (где ρ - плотность вещества), измеряемую в м 2 /с (СИ) и стоксах (СГС). Вязкость жидкостей и газов измеряется при помощи вискозиметров (смотри Вискозиметрия).

Вязкость идеальных газов определяется соотношением: η = (1/3)mn??, где m - масса молекулы, n - число молекул в единице объёма, ? - средняя скорость молекул, ? - длина свободного пробега молекулы.

Вязкость газов увеличивается при нагревании, а вязкость жидкостей, наоборот, уменьшается. Это связано с различными молекулярными механизмами вязкости в этих системах. Различают два механизма переноса количества движения: кинетический (не предполагающий столкновений между молекулами) и столкновительный. Первый является преобладающим в разреженном газе, второй - в плотном газе и жидкости.

В газах расстояния между молекулами существенно больше радиуса действия молекулярных сил, поэтому вязкость газов - следствие хаотического (теплового) движения молекул, в результате которого молекулы переходят из слоя в слой, замедляя течение. Поскольку средняя скорость молекул? возрастает с повышением температуры, вязкость газов увеличивается при нагревании.

Вязкость жидкостей, где расстояние между молекулами много меньше, чем в газах, обусловлена в первую очередь межмолекулярными взаимодействиями, ограничивающими подвижность молекул. С повышением температуры облегчается взаимное перемещение молекул, ослабевают межмолекулярные взаимодействия и, следовательно, уменьшается внутреннее трение жидкости.

Вязкость жидкости определяется размерами и формой молекул, их взаимным расположением и силой межмолекулярных взаимодействий. Вязкость зависит от химической структуры молекул жидкости. Так, вязкость органических веществ возрастает с введением в молекулу полярных групп и циклов. В гомологических рядах (насыщенные углеводороды, спирты, органические кислоты и т. п.) вязкость соединений возрастает с ростом молекулярной массы.

Вязкость растворов зависит от их концентрации и может быть как больше, так и меньше вязкости чистого растворителя. Вязкость предельно разбавленных суспензий линейно зависит от объёмной доли φ взвешенных частиц: η = η 0 (1 +αφ) (формула Эйнштейна), где η 0 - вязкость дисперсионной среды. Коэффициент α зависит от формы частиц; в частности, для сферических частиц α = 2,5. Аналогичная зависимость вязкости от объёмной доли наблюдается в растворах глобулярных белков.

Вязкость может изменяться в широких пределах. Далее приведены значения вязкости некоторых жидкостей и газов при температуре 20°С (в 10 -3 Па·с): газы - водород 0,0088, азот 0,0175, кислород 0,0202; жидкости - вода 1,002, этиловый спирт 1,200, ртуть 1,554, нитробензол 2,030, глицерин 1,485.

Наиболее низкой вязкостью обладает жидкий гелий. При температуре 2,172 К он переходит в сверхтекучее состояние, в котором вязкость равна нулю (смотри Сверхтекучесть). Вязкость газов в сотни раз меньше, чем вязкость обычных жидкостей. Вязкость расплавленных металлов по порядку величины близка к вязкости обычных жидкостей.

Высокой вязкостью обладают растворы и расплавы полимеров. Вязкость даже разбавленных растворов полимеров существенно выше, чем вязкость низкомолекулярных соединений. Это связано с тем, что размеры полимерных макромолекул настолько велики, что разные участки одной и той же макромолекулы оказываются в слоях, движущихся с разными скоростями, что вызывает дополнительное сопротивление течению. Вязкость более концентрированных растворов полимеров становится ещё выше из-за перепутанности макромолекул между собой. На измерении вязкости растворов основан один из способов оценки молекулярной массы полимеров.

Наличие в растворах полимеров пространственных структур, образуемых сцеплением макромолекул, приводит к возникновению так называемой структурной вязкости, которая (в отличие от вязкости ньютоновских жидкостей) зависит от напряжения (или скорости) сдвига (смотри Реология). При течении структурированной жидкости работа внешних сил затрачивается не только на преодоление внутреннего трения, но и на разрушение структуры.

Лит.: Ландау Л. Д., Ахиезер А. И., Лифшиц Е. М. Курс общей физики. Механика и молекулярная физика. 2-е изд. М., 1969; Филиппова О. Е., Хохлов А. Р. Вязкость разбавленных растворов полимеров. М., 2002; Шрамм Г. Основы практической реологии и реометрии. М., 2003.

Вязкость - это свойство жидкости оказывать сопротивление сдвигающим усилиям. Вязкость - свойство, присущее как капельным жидкостям, так и газам, которое проявляется только при движении, не может быть обнаружено при покое, и проявляется в виде внутреннего трения при перемещении смежных частиц жидкости. Вязкость характеризует степень текучести жидкости и подвижности ее частиц. Вязкостью жидкостей объясняется сопротивление и потери напор, которое возникает при движении их по трубам, каналам и прочим руслам, а также при движении в них инородных тел.

Изучение свойств внутреннего трения жидкости активно занимался Исаак Ньютон , заложив основы учению о вязкости. Ньютон высказал предположение (впоследствии подтвержденное опытом), что силы сопротивления, возникающие при таком скольжении слоев, пропорциональны площади соприкосновения слоев и скорости скольжения. В итоге, И. Ньютон получил зависимость, характеризующую связь вязкости с явлением внутреннего трения, получившую название одноименного закона.

Пусть жидкость течет вдоль плоской стенки параллельными слоями. Каждый слой будет двигаться со своей скоростью, причем скорость слоев будет увеличиваться по мере отдаления от стенки.

Рассмотрим два слоя жидкости, движущиеся на расстоянии Δy друг от друга. Поскольку между слоями присутствует сила трения и благодаря взаимному торможению различные слои имеют различные скорости, и слой А движется со скоростью v, а слой Б - со скоростью (v+Δv). Величина Δv является абсолютным сдвигом слоя А по слою Б, а величина Δv/Δy - относительным сдвигом, или градиентом скорости. Тогда при движении возникает касательное напряжение τ (тау), которое характеризует трение на единицу площади (напряжением внутреннего трения) .

Напряжение внутреннего трения имеет физический смысл зависимости:

где F тр - сила внутреннего трения, Н; S - площадь соприкосновения поверхностей, м 2 .

Тогда согласно закону Ньютона зависимость между напряжением и относительным сдвигом будет иметь вид:

т.е. напряжение внутреннего трения пропорционального градиенту скорости.

Коэффициент пропорциональности µ (мю) называется динамическим коэффициентом вязкости . Из формулы видно, что динамический коэффициент вязкости численно равен напряжению внутреннего трения в том случае, когда относительная скорость двух плоскостей А и Б, отстоящих друг от друга на расстоянии 1 м, равна 1м/с.

Размерность динамического коэффициента вязкости следует из формулы. Так как напряжение τ есть сила, отнесенная к единице площади, то его размерность равна:

Размерность градиента скорости:


Отсюда размерность динамического коэффициента вязкости:

Таким образом, за единицу измерения динамической вязкости в системе единиц СИ принимают:

В физической системе единицей динамической вязкости является пуаз, обозначается «П »:

Динамическая вязкость у капельных жидкостей, молекулы которых расположены весьма близко друг к другу, при повышении температуры уменьшается в связи с увеличением скорости броуновского движения, ос-лабляющего удерживающие связи, то есть силы сцепления.

Зависимость коэффициента μ от температуры в общем виде выражается формулой:

где - значение при t = 0°C; а и b - опытные коэффициенты, зависящие от физико-химических свойств (от рода) жидкости; t - температура жидкости в °С.

У газов силы притяжения между молекулами проявляют себя только при сильном сжатии, а в обычных условиях молекулы газов находятся в состоянии хаотичного теплового движения и трение слоев газа друг о друга происходит только вследствие столкновения молекул. При повышении температуры скорость молекул возрастает, растет число их столкновений и вязкость возрастает.

Для пресной воды Пуазейлем получена формула:

Для воздуха известна формула Милликена:

В гидравлике для характеристики вязких свойств газов и паров иногда вместо динамического употребляется другой коэффициент вязкости, обозначаемый буквой η (эта) и связанный с динамическим коэффициентом уравнением

где g - ускорение силы тяжести, м/с 2 .

Очевидно, этот коэффициент вязкости η имеет размерность:

При этом единицей измерения η в технической системе единиц является

В гидравлике и на производстве широко применяется так называемый кинематический коэффициент вязкости ν (ню), определяемый как отношение динамической вязкости к плотности:

Размерность кинематического коэффициента вязкости:

В системе СИ для ν принята единица: .

Единицей измерения коэффициента ν в физической системе служит стокс, обозначается «Ст »:

Например, кинематический коэффициент вязкости воды равен

Величину, обратную динамической вязкости называют текучестью .

Вязкость для всех капельных жидкостей убывает с повы-шением температуры. Для получения точных гидравлических расчетов рекомендуется иметь график (или таблицу) зависимости вязкости от температуры, построенный на основе спе-циальных определений в лаборатории. Весьма осторожно следует относиться к различного рода номограммам и формулам, служащим для определения вязкости смеси двух или нескольких различных нефтепродуктов.

График, характеризующий зависимость изменения вязкости жидкости от температуры называется вискограммой (Рис. 1.3).

Рис.1.3. Вискограмма

Для определения вязкости жидкости при любой произвольной температуре T с достаточной точностью используется формула Рейнольдса-Филонова:

где ν - вязкость при известной температуре Т , u - коэффициент крутизны вискограммы, который характеризует угол наклона касательной вискограммы к оси абсцисс (Рис. 1.4) и определяется по формуле:

Рис.1.4 Определение коэффициента крутизны вискограммы

Таким образом, можно охарактеризовать любую жидкость и определить ее вязкость при любой температуре, зная координаты двух произвольных точек вискограммы. Стоит заметить, что для капельных жидкостей коэффициент вискограммы положителен, однако существуют жидкости, у которых вязкость мало изменяется при изменении температуры, для газообразных - коэффициент вискограммы отрицателен. Существуют жидкости, вязкость которых мало зависит от температуры, они представляют собой сложные химические соединения и используются в качестве рабочих в гидравлических машинах, например в вискомуфтах.

Существуют жидкости, для которых закон И. Ньютона неприменим. В отличие от обычных, ньютоновских, эти жидкости называют неньютоновскими , или аномальными.

Значения кинематической вязкости ν воды и воздуха

Вязкость различных сортов жидкости одного названия, например, нефти, в зависимости от химического состава и молекулярного строения может иметь различные значения.

Для вязких нефтей средние значения u = 0,05 + 0,1 на 1°С.

Вязкость жидкостей, как показывают опыты, зависит также от давления. При возрастании давления она обычно увеличивается. Исключением является вода, для которой при температуре до 32° С с повышением давления вязкость уменьшается. При давлениях, встречающихся в практике (до 20 МПа), изменение вязкости жидкостей весьма мало и при обычных гидравлических расчетах не учитывается.

· Закон сохранения импульса

См. также: Портал:Физика

Характер падения тела в жидкости с малой (сверху) и с большой (снизу) вязкостью

Вя́зкость (вну́треннее тре́ние) - одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате происходит рассеяние в виде тепла работы, затрачиваемой на это перемещение.

Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей - это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.

Различают динамическую вязкость (единицы измерения: Па·с = 10 пуаз) и кинематическую вязкость (единицы измерения: стокс , м²/с, внесистемная единица - градус Энглера). Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества и своим происхождением обязана классическим методам измерения вязкости, таким как измерение времени вытекания заданного объёма через калиброванное отверстие под действием силы тяжести.

Переход вещества из жидкого состояния в стеклообразное обычно связывают с достижением вязкости порядка 10 11 −10 12 Па·с

Прибор для измерения вязкости называется вискозиметром .

Сила вязкого трения

Сила вязкого трения F пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h:

Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости .

Качественно существенное отличие сил вязкого трения от сухого трения , кроме прочего, то, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение, то есть для вязкого трения не существует трения покоя , и наоборот - под действием только вязкого трения тело, вначале двигавшееся, никогда (в рамках макроскопического приближения, пренебрегающего броуновским движением) полностью не остановится, хотя движение и будет бесконечно замедляться.

Вторая вязкость

Вторая вязкость, или объёмная вязкость - внутреннее трение при переносе импульса в направлении движения. Влияет только при учёте сжимаемости и/или при учёте неоднородности коэффициента второй вязкости по пространству.

Если динамическая (и кинематическая) вязкость характеризует деформацию чистого сдвига, то вторая вязкость характеризует деформацию объёмного сжатия.

Объёмная вязкость играет большую роль в затухании звука и ударных волн , и экспериментально определяется путём измерения этого затухания.

Вязкость газов

  • μ = динамическая вязкость в (Па·с) при заданной температуре T ,
  • μ 0 = контрольная вязкость в (Па·с) при некоторой контрольной температуре T 0 ,
  • T = заданная температура в Кельвинах,
  • T 0 = контрольная температура в Кельвинах,
  • C = постоянная Сазерленда для того газа, вязкость которого требуется определить.

Эту формулу можно применять для температур в диапазоне 0 < T < 555 K и при давлениях менее 3,45 МПа с ошибкой менее 10 %, обусловленной зависимостью вязкости от давления.

Постоянная Сазерленда и контрольные вязкости газов при различных температурах приведены в таблице ниже

Газ C T 0 μ 0

Вязкость жидкостей

Динамический коэффициент вязкости

Коэффициент вязкости (динамическая вязкость) может быть получен на основе соображений о движениях молекул. Очевидно, что будет тем меньше, чем меньше время t «оседлости» молекул. Эти соображения приводят к выражению для коэффициента вязкости, называемому уравнением Френкеля-Андраде:

Иная формула, представляющая коэффициент вязкости, была предложена Бачинским . Как показано, коэффициент вязкости определяется межмолекулярными силами, зависящими от среднего расстояния между молекулами; последнее определяется молярным объёмом вещества . Многочисленные эксперименты показали, что между молярным объёмом и коэффициентом вязкости существует соотношение

где с и b - константы. Это эмпирическое соотношение называется формулой Бачинского .

Динамическая вязкость жидкостей уменьшается с увеличением температуры, и растёт с увеличением давления.

Кинематическая вязкость

В технике, в частности, при расчёте гидроприводов и в триботехнике , часто приходится иметь дело с величиной

и эта величина получила название кинематической вязкости. Здесь - плотность жидкости; - динамическая вязкость (см. выше).

Кинематическая вязкость в старых источниках часто указана в сантистоксах (сСт). В СИ эта величина переводится следующим образом:

1 сСт = 1мм 2 1c = 10 −6 м 2 c

Ньютоновские и неньютоновские жидкости

Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. В уравнении Навье - Стокса для ньютоновской жидкости имеет место аналогичный вышеприведённому закон вязкости (по сути, обобщение закона Ньютона, или закон Навье):

где - тензор вязких напряжений.

где - энергия активации вязкости (кДж/моль), - температура (), - универсальная газовая постоянная (8,31 Дж/моль·К) и - некоторая постоянная.

Вязкое течение в аморфных материалах характеризуется отклонением от закона Аррениуса: энергия активации вязкости изменяется от большой величины при низких температурах (в стеклообразном состоянии) на малую величину при высоких температурах (в жидкообразном состоянии). В зависимости от этого изменения аморфные материалы классифицируются либо как сильные, когда , или ломкие, когда . Ломкость аморфных материалов численно характеризуется параметром ломкости Доримуса : сильные материалы имеют , в то время как ломкие материалы имеют .

Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением:

с постоянными , , , и , связанными с термодинамическими параметрами соединительных связей аморфных материалов.

В узких температурных интервалах недалеко от температуры стеклования это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.

Вязкость

Если температура существенно ниже температуры стеклования , двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса

с высокой энергией активации , где - энтальпия разрыва соединительных связей, то есть создания конфигуронов, а - энтальпия их движения. Это связано с тем, что при аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.

При двуэкспоненциальное уравнение вязкости также сводится к уравнению типа Аррениуса

но с низкой энергией активации . Это связано с тем, что при аморфные материалы находятся в расправленном состоянии и имеют подавляющее большинство соединительных связей разрушенными, что облегчает текучесть материала.

Относительная вязкость

В технических науках часто пользуются понятием относительной вязкости , под которой понимают отношение коэффициента динамической вязкости (см. выше) раствора к коэффициенту динамической вязкости чистого растворителя:

где μ - динамическая вязкость раствора; μ 0 - динамическая вязкость растворителя.

Вязкость некоторых веществ

Для авиастроения и судостроения наиболее важно знать вязкости воздуха и воды.

Вязкость воздуха

Вязкость воздуха зависит, в основном, от температуры. При 15.0 °C вязкость воздуха составляет 1.78·10 −5 кг/(м·с), 17.8 мкПа.с или 1.78·10 −5 Па.с.. Можно найти вязкость воздуха как функцию температуры с помощью Программы расчёта вязкостей газов

Вязкость воды