Порошковая металлургия как работает литье. Методы порошковой металлургии. Физико-химические способы получения порошков

Порошковая металлургия как метод получения и обработки материалов отличается разнообразием технологических приемов и способов производства, что позволяет получать спеченные материалы и изделия различных составов, свойств и назначений. Выделяются две особенности при применении методов порошковой металлургии.

1. Возможность получения принципиально новых материалов и изделий из них со специфическими свойствами, которые нельзя получить при использовании других технологических процессов (детали из фрикционных и антифрикционных, пористых материалов и материалов с особыми физическими свойствами). Эффективность изготовления таких деталей, прежде всего, определяется их назначением и эксплуатационными свойствами.

2. Изготовление деталей, не обладающих специфическими свойствами, для которых метод порошковой металлургии не является монопольным. К ним относятся детали конструкционного назначения, получение которых методом порошковой металлургии оправдано лишь значительным эффектом за счет снижения расхода материала, трудоемкости, себестоимости и других технико-экономических показателей.

Характерной особенностью порошковой металлургии как промышленного метода изготовления различного рода заготовок является применение исходного сырья в виде порошков, которые затем прессуют или формуют в изделия заданных размеров и подвергают термической обработке (спеканию), проводимой при температурах ниже температуры плавления основного компонента шихты.

Основные элементы технологии порошковой металлургии следующие :

Получение и подготовка порошков исходных материалов, которые могут представлять собой чистые металлы или их сплавы, металлоиды, соединения металлов с неметаллами и другие химические соединения;

Прессование из подготовленной шихты изделий необходимой формы в специальных пресс-формах, т. е. формование будущего изделия;

Термическая обработка (или спекание) спрессованных изделий, обеспечивающая им окончательные физико-механические и другие свойства.

В производственной практике иногда встречаются отклонения от типового технологического процесса, например совмещение прессования и спекания, пропитка пористого брикета расплавленным металлом, допрессовка или калибровка спеченного полуфабриката, дополнительная механическая обработка спеченных изделий и т. д.

Достоинства порошковой металлургии следующие:

Возможность изготовления деталей из тугоплавких материалов, псевдосплавов (например, медь - вольфрам, железо - графит), пористых материалов с заранее заданной пористостью (фильтры, самосмазывающиеся подшипники);

Значительная экономия материалов в связи с возможностью прессования изделий с окончательными размерами, не нуждающихся (или почти не нуждающихся) в последующей механической обработке; отходы производства в этом случае не превышают 1-5 %;

Возможность получения изделий из материалов высокой чистоты, так как при изготовлении деталей методом порошковой металлургии (в отличие от литья) исключается внесение каких-либо загрязнений в перерабатываемый Материал;

Технология порошковой металлургии по своему характеру несложна и основные операции изготовления порошковых изделий не требуют высокой квалификации обслуживающего персонала;

Возможность автоматизации технологических процессов, которые не связаны с разработкой сложных ориентирующих и транспортирующих устройств, бункеров и других механизмов, необходимых при изготовлении деталей из штучных заготовок.

Экономичность методов порошковой металлургии проявляется в полной мере только при больших масштабах производства. Сравнение затрат по изготовлению деталей из литых и спеченных из металлических порошков заготовок показывает, что у первых основной расход составляет заработная плата по изготовлению, у вторых - стоимость технологической оснастки и исходных материалов. В связи с этим замена стальных и чугунных деталей несложной конфигурации деталями из металлических порошков не всегда экономична.

Как показывает опыт, при числе деталей массой 30-50 г менее 10 тыс. шт. в большинстве случаев невыгодно изготовлять детали методом порошковой металлургии. Сравнительно высокая стоимость исходных порошков и пресс- форм делает порошковое производство выгодным лишь в случае, когда объем партий выпускаемых изделий определяется десятками тысяч (табл. 2.27). Однако уникальные свойства получаемых изделий часто делают целесообразным изготовление изделий из порошков и значительно меньшими партиями.

К недостаткам порошковой металлургии можно отнести ограниченность размеров и относительную простоту формы получаемых изделий, что обусловлено спецификой формования порошков. При изготовлении деталей машин методом порошковой металлургии наличие остаточной пористости в некоторых случаях не позволяет получить такие же физико-механические свойства, как при изготовлении литьем или ковкой (рис. 2.44).

В табл. 2.28 представлено изменение прочностных характеристик порошковых и компактных материалов.

Экономически эффективные объемы производства деталей из материалов на основе железа методами порошковой металлургии

Сложность деталей

Производство деталей

Подгруппа

без калибровки

с калибровкой

без калибровки

Масса деталей, г

Базовый вариант

Обработка резанием

Точное литье

Весьма сложная

Подгруппа

Базовый вариант - штамповка

с калибровкой

без калибровки

с калибровкой

Весьма сложная

Несмотря на недостатки, метод порошковой металлургии в последние годы настолько широко и прочно вошел во все сферы науки и техники, что трудно перечислить все области его применения. Рассмотрим некоторые из них, охарактеризовав основные порошковые материалы и области их применения.

Типовыми деталями, изготавливаемыми из конструкционных порошковых материалов, являются шестерни, кулачки, звездочки, накладки, шайбы, заглушки, храповики, гайки, фланцы, ограничители, детали мерительных инструментов и др.

Механические свойства конструкционных спеченных материалов характеризуются пределом прочности при изгибе, ударной вязкостью, относительным удлинением, твердостью. Другие физико-механические свойства этих материалов в настоящее время изучены на отдельных марках материалов и отдельных вариантах технологического процесса и являются факультативными. В табл. 2.29 приведены свойства некоторых конструкционных порошковых материалов и основные области их применения.

Коррозионная стойкость деталей, у которых пористость не превышает 6-7 %, такая же, как у компактных материалов того же химического состава. При увеличении пористости коррозионная стойкость ухудшается.

При решении вопроса о переводе деталей на изготовление методом порошковой металлургии необходимо учитывать следующие обстоятельства:

Возможные издержки при изготовлении деталей могут компенсироваться экономическим эффектом при эксплуатации за счет повышения эксплуатационных свойств изделия;

Общая характеристика и назначение конструкционных порошковых материалов

Заложенный запас прочности в деталях из литых и кованых заготовок при конструктивном выборе размеров во много раз превосходит необходимый, хотя это и не вызывается эксплуатационными требованиями; в связи с этим необходимо учитывать реальные условия работы деталей и требования, которые должны предъявляться к ним по механическим и физико-механическим свойствам;

Детали из порошковых материалов имеют в среднем на 5-15 % меньшую плотность, что снижает расход материала и уменьшает массу изделия.

Выбор деталей для перевода на изготовление из металлических порошков необходимо производить в два этапа. На первом этапе оценивают технологичность детали с точки зрения требований порошковой металлургии и определяют возможную схему технологического процесса. На этом этапе деталь анализируют по следующим признакам:

Форме и конфигурации детали (отбирают детали, для которых могут быть применены известные технологические схемы изготовления деталей из порошков, определяют группу сложности детали);

Геометрическим размерам (вычерчивают эскиз спеченной заготовки, анализируют необходимость и возможность изменения размеров и формы детали, необходимость операции калибровки, характер расположения детали в пресс- форме и т. п.;

По давлению прессования оценивают мощность прессового оборудования;

Определяют объем и необходимость последующей механической обработки;

Механическим и физико-механическим свойствам материала (выбирают марку порошкового материала, назначают окончательную схему технологического процесса).

На втором этапе анализируют технико-экономические показатели производства изделий и определяют экономическую целесообразность их перевода на изготовление из порошков.

Анализ осуществляется по показателям:

Годовой программе деталей (отбирают детали, количество которых не ниже критической серийности; при программе ниже критической производство спеченных деталей экономически нецелесообразно; для деталей с особыми свойствами не представляется возможным установить экономически целесообразный уровень серийности, поэтому вопрос о переводе их на изготовление методом порошковой металлургии должен решаться индивидуально);

Коэффициенту использования металла (проводят сравнительный анализ Ки м при производстве деталей по существующей технологии и методом порошковой металлургии (Ки м при изготовлении деталей из порошков составляет не менее 0,75 и зависит от технологической схемы производства);

Себестоимости (осуществляют сравнительный анализ себестоимости изготовления деталей по вариантам).

По завершении подбора номенклатуры деталей для перевода на изготовление их из порошковых материалов для каждой детали оформляют техническое заключение, где анализируемые детали подразделяются на три категории.

К первой относят детали, для которых имеется достаточный опыт по внедрению в промышленное производство деталей подобной сложности и из данного материала. Детали могут быть полностью изготовлены по отработанной технологии.

Ко второй категории относят детали, для которых нет достаточного опыта по внедрению в производство; необходимы проверка отдельных технологических решений по схеме производства и проведение натурных испытаний детали.

К третьей категории относят детали, для изготовления которых нет опыта по формообразованию и отсутствует технология производства; необходимы разработка технологии изготовления детали из данного материала и комплексное исследование материала детали.

Детали, получаемые из порошковых материалов, в соответствии с работой подразделяются на три группы: простую, сложную и весьма сложную. Каждая группа имеет подгруппы сложности. Эскизы деталей для соответствующих групп сложности представлены на рис. 2.45.

При конструировании деталей, предназначенных для изготовления методом порошковой металлургии , следует учитывать ряд ограничений, обусловленных технологией порошковой металлургии (рис. 2.46):

Максимально упрощать форму детали;

Не допускать боковых впадин, круговых канавок, обратной конусности и отверстий, непараллельных оси прессования;

Избегать тонких стенок, узких пазов, острых углов и т. п.;

Изменения размеров по толщине и диаметру должны быть минимальными;

Стремиться использовать круглые сечения взамен квадратных и прямоугольных;

Радиус закругления у наружных углов выбирать не менее 2,5 мм, а у внутренних - 0,25 мм;

При однократном холодном прессовании с последующим спеканием может быть достигнута следующая точность размеров: 0,03-0,05 мм (радиальные размеры); до 0,12 мм (размеры по высоте);

Шероховатость поверхности спеченных деталей определяется шероховатостью поверхности пресс-форм, однако наличие пористости в деталях не позволяет получать полированные поверхности;

Изделия высотой (длиной) более пяти диаметров могут обладать неоднородной плотностью; для получения высокой однородности металла отношение длины к максимальному размеру поперечного сечения детали не должно превышать трех;

для получения высоких прочностных характеристик обрабатываемых деталей необходимо использовать более сложные технологические процессы, включающие двойное (тройное) прессование, калибровку, горячее прессование, горячую объемную штамповку и т. д. (дальнейшее совершенствование этого метода - изостатическое прессование, реализуемое на специальных изостатических прессах).

Изостатическое прессование в отличие от обычных методов осуществляют с помощью газа (или жидкости), находящегося под высоким давлением и равномерно (изостатически) сжимающего заготовку вдоль всей ее поверхности. Изделия, полученные изостатическим прессованием, характеризуются высокой и равномерной плотностью. Исходным материалом чаще всего служит металлический или керамический порошок. Его заключают в плотную эластичную капсулу и прессуют в контейнере высокого давления. В изостатических прессах можно прессовать заготовки диаметром 1000 мм и высотой 2500 мм и более.

Метод получения различных материалов и деталей из металлических порошков путем их прессования и последующего спекания, минуя стадию плавления металла и литья, называется порошковой металлургией.

Технология изготовления деталей методами порошковой металлургии напоминает технологию керамического производства, поэтому продукцию порошковой металлургии нередко называют металлокерамикой.

Порошковая металлургия является одним из наиболее перспективных методов получения изделий, обладающих особыми свойствами – пористостью, высокой твердостью, тугоплавкостью и т. д. Порошковая металлургия имеет большие преимущества по сравнению с другими традиционными способами изготовления изделий, такими как литьё, штамповка, механическая обработка и др., так как позволяет получать совершенно готовые изделия либо детали с незначительно технологическим припусками.

Высокие технико-экономические преимущества метода порошковой металлургии перед другими способами производства (экономия металла, возможность замены цветных и дефицитных металлов менее дефицитными и более дешевыми без ущерба для свойств изделий, повышение производственности труда, получение материалов со специальными свойствами и т. п.) создали предпосылки для широкого применения порошковых материалов в различных областях техники, роста выпуска деталей и непрерывного расширения их номенклатуры.

В настоящее время получаемые методом порошковой металлургии металлокерамические изделия широко применяются в виде антифрикционных, фрикционных и конструкционных деталей, а также в виде фильтров, магнитов, электроконтактов, деталей специальной техники и т. д.


Порошковая металлургия во второй половине XX века стала одним из важнейших направлений науки и техники. Материалы и изделия, полученные методом порошковой металлургии, применяют практически в любой отрасли современной промышленности. Получать и применять некоторые виды порошков, а также применять горячую ковку порошковой массы люди умели ещё в бронзовом веке. Порошковая металлургия , как способ обработки металлов, зародилась в первой половине XIX века.

Возрождение интереса к порошковой металлургии было связано с развитием электротехники в начале бывшего века. Электроламповой промышленности требовались тугоплавкие материалы для нитей ламп накаливания, и возрождение порошковой металлургии вплотную связано с металлургией вольфрама. Решение этой трудоемкой задачи послужило началом к налаживанию производства самосмазывающихся подшипников, твердых сплавов, магнитных и электроконтактных материалов, конструкционных и многих других материалов.
Технология порошковой металлургии позволяет получать изделия с обычными свойствами из обычных материалов, но с лучшими технологическими показателями производства по сравнению с традиционными технологиями, поскольку является ресурсосберегающей и во многих случаях энергосберегающей технологией. В настоящее время порошковая металлургия развивается быстрыми темпами как в направлении совершенствования существующих и разработки новых технологических процессов, так и в направлении создания новых материалов. Расширение применения порошковых материалов в автопромышленности влечет за собой существенное снижение веса автомобилей. Наряду с изготовлением конструкционных сплавов на основе железа порошковую металлургию широко применяют для получения материалов на основе цветных металлов, например, пористых бронз для самосмазывающихся подшипников, керамик (оксиды алюминия и титана) для двигателей, изделий химической и медицинской промышленности, магнитных демпфирующих материалов и т.д. Порошковые материалы находят свое применение также в аэрокосмической технике.
Технология порошковой металлургии состоит из следующих основных этапов: получение металлического порошка или смеси порошков разнородных материалов, формования, спекания и дополнительной обработки порошковых материалов и изделий. На практике нередко встречаются отклонения от этой совокупности элементов технологии, так процессы формования и спекания могут быть совмещены в одной операции (например, при горячем изостатическом прессовании или самораспространяющемся высокотемпературном синтезе). Однако в любом варианте порошковой технологии неизменными остаются использование порошкообразного вещества в качестве исходного и применение нагрева при температуре ниже точки плавления основного компонента.

Крупномасштабное производство железного порошка для порошковой металлургии путем водородного восстановления измельченного губчатого железа началось в 1946г.
Успешное применение железных и стальных порошков для порошковой металлургии в качестве сырья для изготовления конструкционных деталей обусловлено рядом особых факторов. Самыми важными из них являются:

Текучесть порошка
-Насыпная плотность порошка
-Прессуемость порошка
-Прочность неспеченной прессовки
-Стабильность размеров изделия во время спекания.

Существует два основных процесса для получения железного порошка для порошковой металлургии:

Процесс производства губчатого железа и железного порошка с восстановлением высококачественной железной руды;
-Распыление мягкой стали с помощью водяных струй под большим давлением.
Губчатые железные порошки для порошковой металлургии отличаются стабильностью размеров во время спекания и, благодаря нерегулярной форме частиц, отличной прочностью неспеченной прессовки.

Высокая прочность спрессованной детали полученной методом порошковой металлургии до спекания, имеет большое значение при выталкивании из пресс-формы и обработки детали для предотвращения растрескивания, особенно когда речь идет об изделиях с низкой плотностью. На прочность неспеченого материала для порошковой металлургии сильное влияние оказывает форма железных частиц, тип и количество смазочного вещества (или других добавок), и плотность прессовки.

По прочности до спекания губчатые железные порошки для порошковой металлургии со своими частицами нерегулярной формы превосходят распыленные порошки, но у последних вполне достаточная прочность до спекания для изготовления деталей с высокой плотностью.

Порошковая металлургия I Порошко́вая металлурги́я

область техники, охватывающая совокупность методов изготовления порошков металлов и металлоподобных соединений, полуфабрикатов и изделий из них (или их смесей с неметаллическими порошками) без расплавления основного компонента. Технология П. м. включает следующие операции: получение исходных металлических порошков и приготовление из них шихты (смеси) с заданными химическим составом и технологическими характеристиками; формование порошков или их смесей в заготовки с заданными формой и размерами (главным образом Прессование м); спекание, т. е. термическую обработку заготовок при температуре ниже точки плавления всего металла или основной его части. После спекания изделия обычно имеют некоторую пористость (от нескольких процентов до 30-40%, а в отдельных случаях до 60%). С целью уменьшения пористости (или даже полного устранения её), повышения механических свойств и доводки до точных размеров применяется дополнительная обработка давлением (холодная или горячая) спечённых изделий; иногда применяют также дополнительную термическую, термохимическую или термомеханическую обработку. В некоторых вариантах технологии отпадает операция формования: спекают порошки, засыпанные в соответствующие формы. В ряде случаев прессование и спекание объединяют в одну операцию т. н. горячего прессования - обжатия порошков при нагреве.

Получение порошков. Механическое измельчение металлов производят в вихревых, вибрационных и шаровых мельницах. Другой, более совершенный метод получения порошков - распыление жидких металлов: его достоинства - возможность эффективной очистки расплава от многих примесей, высокая производительность и экономичность процесса. Распространено получение порошков железа, меди, вольфрама, молибдена высокотемпературным восстановлением металла (обычно из окислов) углеродом или водородом. Находят применение гидрометаллургические методы восстановления растворов соединений этих металлов водородом. Для получения медных порошков наиболее часто используют электролиз водных растворов. Имеются и другие, менее распространённые методы приготовления порошков различных металлов, например электролиз расплавов и термическая диссоциация летучих соединений (карбонильный метод).

Формование порошков. Основной метод формования металлических порошков - прессование в пресс-формах из закалённой стали под давлением 200-1000 Мн/м 2 (20-100 кгс/мм 2 ) на быстроходных автоматических прессах (до 20 прессовок в 1 мин ). Прессовки имеют форму, размеры и плотность, заданные с учётом изменения этих характеристик при спекании и последующих операциях. Возрастает значение таких новых методов холодного формования, как изостатическое прессование порошков под всесторонним давлением, прокатка и Экструзия порошков.

Спекание проводят в защитной среде (водород; атмосфера, содержащая соединения углерода; вакуум; защитные засыпки) при температуре около 70-85% от абсолютной точки плавления, а для многокомпонентных сплавов - несколько выше температуры плавления наиболее легкоплавкого компонента. Защитная среда должна обеспечивать восстановление окислов, не допускать образования нежелательных загрязнений продукции (копоти, карбидов, нитридов и т.д.), предотвращать выгорание отдельных компонентов (например, углерода в твёрдых сплавах), обеспечивать безопасность процесса спекания. Конструкция печей для спекания должна предусматривать проведение не только нагрева, но и охлаждения продукции в защитной среде. Цель спекания - получение готовых изделий с заданными плотностью, размерами и свойствами или полупродуктов с характеристиками, необходимыми для последующей обработки. Расширяется применение горячего прессования (спекания под давлением), в частности изостатического.

П. м. имеет следующие достоинства, обусловившие её развитие. 1) Возможность получения таких материалов, которые трудно или невозможно получать др. методами. К ним относятся: некоторые тугоплавкие металлы (вольфрам, тантал); сплавы и композиции на основе тугоплавких соединений (твёрдые сплавы на основе карбидов вольфрама, титана и др.): композиции и т. н. псевдосплавы металлов, не смешивающихся в расплавленном виде, в особенности при значительной разнице в температурах плавления (например, вольфрам - медь); композиции из металлов и неметаллов (медь - графит, железо - пластмасса, алюминий - окись алюминия и т.д.); пористые материалы (для подшипников, фильтров, уплотнений, теплообменников) и др. 2) Возможность получения некоторых материалов и изделий с более высокими технико-экономическими показателями. П. м. позволяет экономить металл и значительно снижать себестоимость продукции (например, при изготовлении деталей литьём и обработкой резанием иногда до 60-80% металла теряется в литники, идёт в стружку и т.п.). 3) При использовании чистых исходных порошков можно получить спечённые материалы с меньшим содержанием примесей и с более точным соответствием заданному составу, чем у обычных литых сплавов. 4) При одинаковом составе и плотности у спечённых материалов в связи с особенностью их структуры в ряде случаев свойства выше, чем у плавленых, в частности меньше сказывается неблагоприятное влияние предпочтительной ориентировки (текстуры), которая встречается у ряда литых металлов (например, бериллия) вследствие специфических условий затвердевания расплава. Большой недостаток некоторых литых сплавов (например, быстрорежущих сталей и некоторых жаропрочных сталей) - резкая неоднородность локального состава, вызванная ликвацией (См. Ликвация) при затвердевании. Размеры и форму структурных элементов спечённых материалов легче регулировать, и главное, можно получать такие типы взаимного расположения и формы зёрен, которые недостижимы для плавленого металла. Благодаря этим структурным особенностям спечённые металлы более термостойки, лучше переносят воздействие циклических колебаний температуры и напряжений, а также ядерного облучения, что очень важно для материалов новой техники.

П. м. имеет и недостатки, тормозящие её развитие: сравнительно высокая стоимость металлических порошков; необходимость спекания в защитной атмосфере, что также увеличивает себестоимость изделий П. м.; трудность изготовления в некоторых случаях изделий и заготовок больших размеров; сложность получения металлов и сплавов в компактном беспористом состоянии; необходимость применения чистых исходных порошков для получения чистых металлов.

Недостатки П. м. и некоторые её достоинства нельзя рассматривать как постоянно действующие факторы: в значительной степени они зависят от состояния и развития как самой П. м., так и др. отраслей промышленности. По мере развития техники П. м. может вытесняться из одних областей и, наоборот, завоёвывать другие. Впервые методы П. м. разработали в 1826 П. Г. Соболевский и В. В. Любарский для изготовления платиновых монет. Необходимость использования для этой цели П. м. была обусловлена невозможностью достижения в то время температуры плавления платины (1769 °С). В середине 19 в. в связи с развитием техники получения высоких температур промышленное использование методов П. м. прекратилось. П. м. возродилась на рубеже 20 в. как способ производства из тугоплавких металлов нитей накала для электрических ламп. Однако развивавшиеся в дальнейшем методы дугового, электроннолучевого, плазменного плавления и электроимпульсного нагрева позволили получать не достижимые ранее температуры, вследствие чего удельный вес П. м. в производстве этих металлов несколько снизился. Вместе с тем прогресс техники высоких температур ликвидировал такие недостатки П. м., ограничивавшие её развитие, как, например, трудность приготовления порошков чистых металлов и сплавов: метод распыления даёт возможность с достаточной полнотой и эффективностью удалить в шлак примеси и загрязнения, содержавшиеся в металле до расплавления. Благодаря созданию методов всестороннего обжатия порошков при высоких температурах в основном преодолены и трудности изготовления беспористых заготовок крупных размеров.

В то же время ряд основных достоинств П. м. - постоянно действующий фактор, который, вероятно, сохранит своё значение и при дальнейшем развитии техники.

Лит.: Федорченко И. М., Андриевский Р. А., Основы порошковой металлургии, К., 1961; Бальшин М. Ю.. Научные основы порошковой металлургии и металлургии волокна, М., 1972; Кипарисов С. С., Либенсон Г. А., Порошковая металлургия, М., 1972.

М. Ю. Бальшин.

II Порошко́вая металлу́рги́я («Порошко́вая металлу́рги́я»)

ежемесячный научно-технический журнал, орган института проблем материаловедения АН УССР. Выходит с 1961 в Киеве. Публикует статьи по теории, технологии и истории порошковой металлургии, о тугоплавких соединениях и высокотемпературных материалах. Тираж (1974) 2,3 тыс. экз. Переиздаётся на английском языке в Нью-Йорке.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Порошковая металлургия" в других словарях:

    Порошковая металлургия технология получения металлических порошков и изготовления изделий из них (или их композиций с неметаллическими порошками). В общем виде технологический процесс порошковой металлургии состоит из четырёх основных… … Википедия

    ПОРОШКОВАЯ МЕТАЛЛУРГИЯ, производство порошков металлов и изделий из них. Порошки прессуются в желаемые формы и затем нагреваются несколько ниже ТЕМПЕРАТУРЫ ПЛАВЛЕНИЯ. Использование порошков является более экономичным, чем использование… … Научно-технический энциклопедический словарь

    порошковая металлургия - Ндп. металлокерамика Область науки и техники, охватывающая производство металлических порошков а также изделий из них или их смесей с неметаллическими порошками. [ГОСТ 17359 82] Недопустимые, нерекомендуемые металлокерамика Тематики порошковая… … Справочник технического переводчика

    Современная энциклопедия

    Производство порошков металлов и изделий из них, их смесей и композиций с неметаллами. Порошки вырабатываются механическим измельчением или распылением жидких исходных металлов, высокотемпературным восстановлением и термической диссоциацией… … Большой Энциклопедический словарь

    Порошковая металлургия - ПОРОШКОВАЯ МЕТАЛЛУРГИЯ, производство металлических порошков и изделий из них, их смесей и композиций с неметаллами, а также изделий с различной степенью пористости. Изделия получают прессованием с последующей или одновременной термической,… … Иллюстрированный энциклопедический словарь

    порошковая металлургия - раздел науки и отрасль металлургической и машиностроительной промышленности, включающий технологические процессы получения порошков металлов, сплавов и химических соединений, производства из них полуфабрикатов и готовых… … Энциклопедический словарь по металлургии

    Порошковая металлургия - 1. Порошковая металлургия Ндп. Металлокерамика D. Pulvermetallurgie Е. Powder metallurgy F. Métallurgie des poudres Источник: ГОСТ 17359 82: Порошковая металлургия. Термины и определения оригинал документа Смотри также родствен … Словарь-справочник терминов нормативно-технической документации

    Область науки и техники, охватывающая совокупность методов изготовления порошков металлов, сплавов и металлоподобных соед., полуфабрикатов и изделий из них или их смесей с неметаллич. порошками без расплавления осн. компонента. Практика… … Химическая энциклопедия

    Технология получения металлических порошков и изготовления изделий из них, а также из композиций металлов с неметаллами. В обычной металлургии металлические изделия получают, обрабатывая металлы такими методами, как литье, ковка, штампование и… … Энциклопедия Кольера

    Отрасль науки и техники, занимающаяся получением порошков металлов, сплавов и бескислородных соединений, а также материалов и изделий на их основе. Получение кислородных соединений типа оксидов – это область керамического производства, хотя… … Энциклопедия техники

Книги

  • Порошковая металлургия. Инженерия поверхности, новые порошковые композиционные материалы. Сварка. Часть 1 , Сборник статей , В настоящий сборник включены доклады Международного симпозиума «Порошковая металлургия: инженерия поверхности, новые порошковые композиционные материалы. Сварка» (10–12 апреля 2013 г.),… Категория: Техническая литература Серия: Сборник докладов 8-ого Международного симпозиума (Минск, 10-12 апреля 2013 г.) Издатель:

Из металлов и различных сплавов могут производиться порошковые составы. Они могут применяться самым различным образом для защиты заготовок и деталей. Порошковая металлургия – активно развивающаяся область, которая имеет огромное количество особенностей. Это направление металлургии появилось более ста лет назад.

Получение порошков

Для производства порошка могут применяться самые различные технологии, но их объединяют следующие моменты:

  1. Экономичность. В качестве сырья могут использоваться отходы металлургической промышленности. Примером назовем окалину, которая сегодня нигде не применяется. Кроме этого, могут применять и другие отходы.
  2. Высокая точность геометрических форм. Изделия, получаемые при применении рассматриваемой технологии порошковой металлургии, обладают точными геометрическими формами, последующая механическая обработка не требуется. Этот момент определяет относительно небольшое количество отходов.
  3. Высокая износостойкость поверхности. За счет мелкозернистой структуры получаемые изделия обладают повышенной твердостью и прочностью.
  4. Невысокая сложность технологий порошковой металлургии.

Рассматривая наиболее распространенные технологии порошковой металлургии отметим, что они делятся на две основные группы:

  1. Физико-механические методы заключаются в измельчении сырья, за счет чего размер частиц становится небольшим. Подобного рода процессы производства характеризуются комбинированием различной нагрузки, которая оказывает воздействие на сырье.
  2. Химико-металлургические методы используются для изменения фазового состояния применяемого сырья. Примером подобного производства можно назвать восстановление солей и окислов, а также других соединений металлов.

Кроме этого, выделим следующие особенности производства порошка:

  1. Шаровой способ предусматривает переработку металлических обрезков в шаровой мельнице. За счет тщательного дробления получается мелкозернистый порошок.
  2. Вихревой способ заключается в применении специальной мельницы, которая создает сильный воздушный поток. Столкновение крупных частиц становится причиной получения мелкого порошка.
  3. Применение дробилок. Нагрузка, которая создается при падении груза большой массы, приводит к измельчению материала. Ударная нагрузка воздействует с определенной периодичностью, за счет чего и происходит дробление состава.
  4. Распыление сырья в жидком виде под воздействием сжатого воздуха. После получения хрупкого состава, металл пропускается через специальное оборудование, которое перемалывает его для получения порошка.
  5. Электролиз – процесс восстановления металла из жидкого состава под воздействием электрического тока. За счет повышения показателя хрупкости сырье может быстро перемалываться в специальных дробилках. Данный метод обработки позволяет получить зерно дендритной формы.

Некоторые из приведенных выше технологий порошковой металлургии получили большое распространение в промышленности по причине высокой производительности и эффективности, другие сегодня практически не применяются из-за повышения стоимости получаемого сырья.

Компактирование

Порошковая металлургия также предусматривает проведение процедуры, которая основана на получении полуфабрикатов в виде прутков и лент. После прессования можно получить практически готовое к применению изделие.

К особенностям процесса компактирования можно отнести нижеприведенные моменты:

  1. В качестве сырья при проведении рассматриваемого процесса применяется сыпучее вещество.
  2. После прохождения компактирования сыпучий порошок становится компактным материалом с пористой структурой. Прочность получаемого изделия приобретается в ходе проведения других процессов обработки.

Рассматривая процесс прессования порошка, отметим применение следующих технологий:

  1. прокатывание;
  2. шликерное литье;
  3. изостатическое прессование за счет оказания давления газом или жидкостью;
  4. прессование с одной или обеих сторон при применении специальных металлических матриц;
  5. инжекционный метод.

Для того чтобы ускорить процесс компактирования, изделия порошок подвергается воздействию высокой температуры. В большинстве случаев расстояние между отдельными частицами уменьшается за счет воздействия высокого давления. Большой прочностью обладают порошки, изготавливаемые из мягких металлов.

Спекание

Финальный этап в порошковой металлургии заключается в воздействии высокой температуры. Практически любой метод порошковой металлургии предусматривает воздействие высокой температуры. Проводится спекание для достижения следующих целей:

  1. для повышения плотности изделия;
  2. для придания определенных физико-механических качеств.

Для термического воздействия проводится установка специального оборудования. Защитная среда, как правило, представлена инертными газами, к примеру, водородом. Процесс спекания может проводится и в вакууме для повышения эффективности применяемой технологии.

Индукционный метод нагрева также пользуется большой популярностью. Он предусматривает использование индукционных печей, которые производят или изготавливают своими руками. В продаже встречается оборудование, способное объединять несколько технологических процессов: спекание и прессование.

Применение продуктов порошковой металлургии

Порошковую металлургию применяют в авиации, электротехнике, радиотехнике и многих других отраслях промышленности. Это связано с тем, что применяемая технология производства позволяет получать детали сложной формы. Кроме этого, современные технологии порошковой металлургии позволяют получить детали, обладающие:

  1. Высокой прочностью. Плотная структура определяет повышенную прочность.
  2. Долговечностью. Получаемые изделия могут прослужить в тяжелых условиях эксплуатации на протяжении длительного периода.
  3. Износостойкостью. Если нужно получить поверхность, которая не истирается под механическим воздействием, то нужно рассмотреть технологию порошковой формовки.
  4. Пластичностью. Можно также получить заготовки повышенной пластичности.

Также распространение этой технологии можно связать с низкой себестоимостью получаемых изделий.

Достоинства и недостатки
Метод получения изделий из порошков получил достаточно широкое распространение по причине большого количества достоинств:

  1. низкая стоимость получаемых изделий;
  2. возможность производства крупных деталей со сложными поверхностями;
  3. высокие физико-механические качества.

Металлургический порошковый метод характеризуется и несколькими недостатками:

  1. Получаемая структура обладает относительно невысокой прочностью.
  2. Структура характеризуется меньшей плотностью.
  3. Рассматриваемые технологии предусматривают применение специализированного оборудования.
  4. При нарушении технологии производства детали имеют низкое качество.

Сегодня порошковая металлургия активно применяется в самых различных отраслях промышленности. Кроме этого, ведутся разработки, которые направлены на улучшение качества получаемых изделий.

В заключение отметим, что при соединении мелких частиц различных металлов и сплавов получаются материалы с особыми эксплуатационными качествами.

Порошковая металлургия - отрасль технологии, занимающаяся изготовлением материалов и деталей из металлических порошков.


Порошковая металлургия позволяет получать материалы и детали, обладающие высокой жаропрочностью, износостойкостью, стабильными магнитными свойствами, полупроводниковые материалы, материалы, не смешивающиеся в расплавленном виде и не образующие твердых растворов, пористые материалы, материалы высокой чистоты, заданного химического состава и др.


Методами порошковой металлургии зачастую могут быть получены детали, которые получают и литьем, но при этом потери значительно меньше: 3– 7%, тогда как при литье они достигают 50–80%. Механические свойства полученных изделий незначительно уступают свойствам литых и кованых изделий. Изделия, полученные порошковой металлургией, по точности размеров и шероховатости поверхности не требуют дополнительной обработки.


Сущность способа заключается в спекании при высокой температуре специально подготовленного брикета. Брикет получают прессованием металлических порошков под давлением. По форме и размерам брикет представляет собой будущую деталь.


Металлические порошки получают двумя основными методами: механическим (размол в шаровых или вихревых мельницах) и физико-химическим (восстановление из окислов, электролиз и др.)


Технологический процесс металлокерамики складывается из следующих операций: 1) приготовление шихты требуемого состава; 2) дозирование; 3)


формование детали; 4) спекание; 5) калибровка.


Сначала порошки очищают химическим, гидромеханическим или магнитным способами, затем проводят измельчение для выравнивания зернистости в шаровых мельницах. Возникающий при этом наклеп снимают отжигом в защитной атмосфере. Далее шихту просеивают и смешивают в вибрационных или барабанных смесителях.


Полученную шихту дозируют по массе или по объему.



Рисунок 1 –


Формование (получение брикета заданной формы и размеров) осуществляют путем прессования в стальных пресс-формах, реже прокаткой (для получения листа, полосы или ленты). Прессование осуществляют на механических и гидравлических прессах, жидкостью через пластичную оболочку, взрывом и т.д. В зависимости от размеров детали применяют одностороннее или двухстороннее (рисунок 1) прессование.


Спекание отформованных брикетов (деталей) производят в водородных или вакуумных печах при температуре t сп =(0,7–0,8)t пл , 0С, где t пл – температура плавления основного компонента шихты.


В результате спекания происходит настолько прочное сцепление частиц порошка (вследствие диффузии), что отдельные частицы порошка как бы перестают существовать самостоятельно. В результате спекания происходит: а) упрочнение и изменение физико-химических свойств, вследствие изменения величины и качества контактных участков; б) изменение размеров детали (усадка или рост); в) изменение микроструктуры (рост зерен и др.).


Время спекания составляет 0,5–6 часов. Горячее прессование, заключающееся в одновременном прессовании и спекании, сокращает время в 20–30 раз, производится при более низкой температуре и давлении, чем спекание. Однако недостатком горячего прессования является малая стойкость пресс-форм.


Калибровка в специальных пресс-формах (после спекания) при давлениях до 1000 МПа повышает точность до 8–10 квалитетов и снижает шероховатость поверхности до R z = 10–3,2 мкм . После калибрования на поверхность детали можно наносить любое гальваническое или другое покрытие. Размеры калибровочных пресс-форм должны отличаться от номинальных размеров детали на величину упругого последействия, составляющего 0,11–0,12%.


Рассмотренная технология нашла самое широкое применение в промышленности, в том числе и при производстве и ремонте вооружения. Так получают весь твердосплавный режущий инструмент (из смеси порошков карбидов вольфрама, титана, тантала и связки - кобальта); жаропрочные спеченные алюминиевые порошки (САП) и сплавы (САС); спеченные ленту и проволоку для наплавки при восстановлении деталей вооружения; пористые спеченные материалы с заданным размером пор для изготовления подшипников, фильтров и т.п.; спеченные материалы с закрытыми порами (газонаполненные материалы), сердечники бронебойных снарядов (из порошков карбидов тяжелых металлов) и многое другое.


В состав спеченных материалов (их называют псевдосплавами) можно включать неметаллические компоненты - графит, глинозем, карбиды, бориды, придающие им особые свойства. Получить обычные (литые) сплавы с такими свойствами невозможно. По такой технологии получают детали из ферритов, альсиферов и других материалов.


В последнее время все шире порошковая металлургия применяется для получения деталей из обычных конструкционных материалов (стали, чугуны, цветные сплавы и т.п.). Это объясняется тем, что этой технологии свойственны исключительно малые отходы. Так, при изготовлении сложных изделий по обычной технологии (ковка) коэффициент использования металла не превышает 0,3–0,4, а по методу порошковой металлургии - он будет близок к 0,95.

Технологии получения порошковых быстрорежущих сталей

Традиционная технология получения быстрорежущих сталей включает в себя выплавку стали и последующую горячую обработку слитков (ковка слитков; обрезка концов заготовки; отжиг заготовки; шлифование заготовки; контроль заготовки; горячая прокатка; обрезка концов проката; отжиг проката; шлифование; контроль заготовки; горячая прокатка; отжиг прутка; правка прутка; контроль заготовок прутка) .


Горячая обработка позволяет уменьшить отрицательные последствия литья - снизить неоднородности распределения карбидов в готовом материале. Высокая вторичная твердость и большие различия физико-механических свойств отдельных фаз в быстрорежущих сталях затрудняют их горячую обработку и приводят к значительным потерям металла (до 50 % от массы литья), поэтому они являются одним из самых дорогостоящих сортов сталей. Известно , что стоимость производства быстрорежущих сталей примерно в 17 раз выше стоимости производства углеродистой стали и примерно в четыре раза выше стоимости производства коррозионно-стойкой хромоникелевой стали (в настоящее время это различие еще увеличилось).


Необходимо отметить, что быстрорежущим сталям, полученным по традиционной технологии, присущ ряд недостатков, сдерживающих дальнейшее развитие этого класса инструментальных материалов. Такими недостатками являются карбидная ликвация в слитке, не устраняемая полностью даже после многократной пластической деформации и значительно снижающая технологическую пластичность заготовок, значительная деформация инструмента при термической обработке, плохая шлифуемость и др. Поэтому совершенствование инструмента из быстрорежущей стали (оптимизация состава материала, технология изготовления и др.) является одним из важных направлений повышения эффективности металлургического и машиностроительного производства в целом.


Производство быстрорежущей стали методами порошковой металлургии позволяет исключить ряд названных выше недостатков и эффективно воздействовать на состав и свойства получаемого материала.


Методы порошковой металлургии включают в себя получение порошка с размером частиц от 40 до 600 мкм посредством распыления жидкого металла потоком газа под давлением 1...1,5 МПа или воды под давлением 3,5...5 МПа и изготовление из него компактных заготовок различными способами горячей пластической деформации . Основные способы получения инструмента из порошков быстрорежущих сталей приведены на рис.


4.2. По технологической схеме 1, в которой обработка давлением не применяется, получают заготовки неперетачиваемых или напайных пластин типа твердосплавных и заготовки фасонного инструмента с минимальными припусками под шлифовку и заточку. По схемам 2..4, в которых используются различные способы горячей пластической деформации, получают соответствующие виды металлургических полуфабрикатов.


Наиболее распространена схема получения изделий из порошковой быстрорежущей стали, получившая название Asea-Stora процесса . В этом случае распыленные газом порошки компактируют горячим изостатическим прессованием при давлении 100...200 МПа и температуре 1000...1200 0С. Перед горячим прессованием возможно использование холодного изостатического прессования с усилием около 0,4 МПа, хотя получаемые таким образом прессовки имеют почти 100 %-ю плотность, их микроструктура несколько неоднородна - попадаются частицы



Рис. 2 Схемы (1...4) получения инструмента из порошков быстрорежущих сталей


с недостаточно раздробленной карбидной сеткой. Последующая горячая пластическая деформация прессовок (ковка или прокатка) с суммарной степенью деформации около 50 % увеличивает однородность микроструктуры и обеспечивает повышение механических свойств получаемой стали.


Отечественными и зарубежными исследованиями установлено, что методы порошковой металлургии позволяют получать быстрорежущие стали с однородной мелкодисперсной структурой и высокими механическими свойствами. Порошковая быстрорежущая сталь по сравнению с быстрорежущей сталью традиционного металлургического производства обладает следующими преимуществами:


обеспечивает более высокую стойкость режущего инструмента (в 1,5...2 раза); изотропностью свойств и повышенной конструктивной прочностью; более высоким уровнем технологических свойств (повышенной технологической пластичностью, незначительной склонностью к росту зерна и деформации при закалке, хорошей шлифуемостью, пониженной склонностью к скалыванию и микровыкрашиванию режущей кромки инструмента).

Порошковая металлургия быстрорежущей стали в нашей стране развивается по двум основным направлениям:


производство безвольфрамовых молибденовых сталей М6Ф1-МП, М6Ф1К8-МП, М6ФЗ-МП, М6Ф2-МП или маловольфрамовых сталей типа 10Р2М9Ф2-МП, 11Р2М9К8-МП и др.;


производство высоколегированных вольфрамомолибденовых сталей Р6М5ФЗ-МП, Р6М5К5-МП, Р6М5ФЗК8-МП, 10Р6М5-МП, Р12МЗФ2К8-МП, в том числе и так называемых сверхбыстрорежущих сталей типа Р8М6Ф8К7-МП и др.


Развитие производства по второму направлению требует большего расхода вольфрама, и других легирующих элементов, но зато при этом увеличивается количество карбидной фазы стали, возрастают вторичная твердость (до НЕД, 70), красностойкость и износостойкость (в 1,5...3 раза) режущего инструмента. Экономия легирующих элементов в этом случае достигается при механической обработке металлов за счет повышения стойкости инструмента .


Рассмотрим несколько подробнее технологию получения порошковой быстрорежущей стали 10Р6М5-МП. Она включает в себя следующие основные операции: выплавку, получение порошка посредством распыления жидкого металла азотом, горячую экструзию порошка в капсулах и последующую термическую обработку заготовок (отжиг) с целью снижения твердости стали и улучшения обрабатываемости ее резанием (рис. 3). Выплавка производится в открытой индукционной печи под слоем шлака. Расход азота при распылении 1 кг жидкого металла составляет 0,6...1,0 м, а скорость охлаждения стали при распылении – 10...105°С/с. Размер гранул порошка после распыления изменяется от 40 до 630 мкм, основу же его составляет, фракция с размером гранул от 60 до 315 мкм. Гистограмма частот распределения размеров гранул порошка стали 10Р6М5 МП представлена на рис. 4. Для получения компактного металла капсулы с порошком подвергаются горячей, экструзии при температуре 1100...1140 °С со степенью их деформации 88% на прессе с усилием 63 МН. Время нагрева капсул с порошком до температуры экструзии составляет 15 ч, время выдержки - 8 ч.


Рис. 3



Рис. 4 Гистограмма частот распределения Н размеров гранул порошка µ стали 10Р6М5-МП после распыления


В качестве смазывающего материала при экструзии используется стекло №185 фракции 0,1 мм. Горячая экструзия - один из перспективных и высокопроизводительных методов получения компактного материала из порошка, в котором совмещаются операции спекания, уплотнения и деформации. Плотность заготовок, полученных из порошка стали 10Р6М5-МП, определяемая на автопикнометре 1320 фирмы «Культроникс» (Франция), близка к теоретической и составляет (7,992...8,034) 40 кг/м. Плотность заготовок из стали Р6М5 составляет (8,031...8,045) 40 кг/м. Для снятия внутренних напряжений после экструзии и подготовки структуры стали 10Р6М5-МП к последующим механической и термической обработкам ее подвергают отжигу (нагрев до 860 °С, выдержка 2 ч, охлаждение с печью до 760 °С, выдержка 6 ч и дальнейшее охлаждение с печью).


В настоящее время разработана порошковая безвольфрамовая быстрорежущая сталь Р0М2ФЗ-МП, получаемая из распыленного азотом порошка. Компактные заготовки из нее изготавливают методом горячего газостатического прессования или методом горячей экструзии. По сравнению со сталью Р6М5 сталь Р0М2ФЗ-МП имеет более высокие технологические свойства: горячую пластичность и шлифуемость, при практически таких же режущей способности и теплостойкости. Данная сталь предназначена для изготовления различных видов режущего инструмента нормальной производительности. Ее применение вместо стандартной быстрорежущей стали Р6М5 позволяет сэкономить до 60 кг вольфрама и 20...30 кг молибдена с каждой тонны стали.


Широко развивается порошковая металлургия быстрорежущих сталей за рубежом. Японской фирмой «Дайдо токусюко» производятся порошковые быстрорежущие стали серии DEX:


DEX20 (1,3С - 4,0Сг - 5,0Мо - 6,5W - 3V); DEX40 (1,3С - 4,0Сг - 5,0Мо 6,5W - 3V - 8,0Со); DEX60 (1,7С - 4,0Сг - 2,0Мо - 15,0W - 5,0V - 8,0Со); DEX80 (2,1С - 4,0Сг - 6,0Мо - 14,0W - 5,5V - 12,0Со).


Стали DEX20 и DEX40, используемые для изготовления матриц, пуансонов, зачистных и вырубных штампов, имеют высокий предел прочности при изгибе и твердость HRC3 60...68.


Стали DEX60 и DEX80 имеют твердость, близкую, к твердости твердых сплавов (до НВСЭ 71), чего невозможно достичь при изготовлении инструментальных сталей традиционным способом. Используются они для изготовления быстрорежущего инструмента.


Фирмами «Asea» и «Stora Kopparberg» Швеция) производятся порошковые быстрорежущие стали типа ASP, например:


ASP30 (1,27С - 4,2Сг - 5,0Мо - 6,4W - 3,1V - 8,5Со);


ASP60 (2,3С - 4,0Сг - 7,0Мо - 6,5W - 6,5V - 10,5Со).


Эти стали применяются для изготовления многолезвийного и деформирующего инструмента, в котором красностойкость является определяющим свойством.


Интенсивно развивается производство порошковых быстрорежущих сталей и в США, Великобритании, ЮАР, Индии, Египте.


Получение заготовок из порошковых быстрорежущих сталей позволяет поднять коэффициент использования металла за счет полной или частичной ликвидации механической обработки, внедрения автоматизированных процессов прессования и спекания и увеличения срока службы изготовленного инструмента за счет получения более дисперсной и однородной гетерофазной структуры стали и снижения балла ее карбидной неоднородности.

Технология получения и применение порошковой проволоки для производства качественных сталей

Среди металлоизделий промышленного назначения порошковая проволока (ПП) занимает особое место как по высоким темпам роста объёмов производства, так и по используемым сырьевым материалам и оборудованию.


В Западной Европе и Японии технология обработки жидкой стали так называемой порошковой проволокой появилась в 1980-81 гг. В нашей стране начало работ по производству отечественной ПП для внепечной обработки черных сплавов можно отнести к 1988 г., когда было принято соответствующее решение в Минчермет СССР. В 1989 г. ЦНИИчермет и МГТУ им. Баумана разработали первый опытный комплекс оборудования для производства металлургической ПП. В 1990 г. НПО "Тулачермет" совместно с ПО "Тульский патронный завод" начали работы по созданию первых образцов отечественных трайбаппаратов и оборудования изготовления ПП. В 1990-91 гг. начались работы в этом направлении и на Чепецком механическом заводе в г. Глазове.


В 2004 года Научно-производственным предприятием «Вулкан-ТМ» (г. Тула) начато производство линий по производству порошковой проволоки и трайб-аппаратов. В настоящее время НПП «Вулкан-ТМ» осуществляет комплектую поставку линий производства порошковой проволоки и трайбаппаратов в составе технологического комплекса внепечной обработки и разливки стали и сплавов (Приложение). Выпускаемое оборудование не уступает по качеству импортным аналогам и имеет существенные преимущества.


Конструктивно порошковая проволока (англ. - "cored wire" - "проволока с сердечником") состоит из протяжённой металлической оболочки, заполненной порошкообразным реагентом.


Подачу проволоки в ковш осуществляют с помощью специальной машины трайб-аппарата (англ. "cored wire injector"), позволяющей регулировать в широких пределах скорость и количество вводимых материалов в зависимости от массы металла и глубины ковша. В ковше оболочка проволоки расплавляется и подаваемое вещество попадает непосредственно в жидкий металл.


Способ внепечной обработки стали посредством порошковых реагентов в металлической оболочке протяжённой длины имеет ряд неоспоримых преимуществ, таких как:


небольшие капитальные вложения и производственные затраты, простота и надежность конструкций машин, совместимость с существующими в металлургических цехах технологическими процессами;

высокое и стабильное усвоение вводимых добавок, небольшой расход материалов и точное регулирование заданного химического состава готового металла;


отсутствие контакта и взаимодействия вводимых добавок с кислородом и влагой воздуха и со шлаком;


небольшая продолжительность операции, отсутствие чрезмерного барботажа, охлаждения и захвата газов металлом;


минимальные трудозатраты обслуживающей рабочей бригады, соблюдение жестких требований техники безопасности и промышленной санитарии, взрывобезопасность, отсутствие пылеи газовыделений, простота управления, механизация и автоматизация технологической операции;


удобство транспортировки и хранения ПП, простота подготовки к вводу в металл присаживаемых материалов;


возможность использования, в том числе, с предварительным хранением и транспортировкой гидрофильных, легковоспламеняющихся и ядовитых реагентов;


повышение производительности плавильных агрегатов, упрощение и сокращение последующего технологического процесса производства деформированных и литых заготовок;


повышение и стабилизация на высоком уровне качественных характеристик, состава и свойств металла, сокращение брака, достижение определенного экономического эффекта.


Порошковыми проволоками доводятся до требуемого химсостава такие марки сталей, как: Ст3, 10, 20, 40, 45, 30Х, 35Х, 40Х, 45Г, 48А, Р6М5, 09Г2С, 09Г2Д, 09Г2ФВ, 15ХГМНТ, 16Д, 17Г2АФ, 17Г1С, 18Г, 18ХГТ, 20ЮЧ, 22ГЮ,


23Х2Г2Т, К-74, а также Grade45, Grade50, Grade55 (по стандарту США АСТМ А 607-92а) и др.


Кроме внепечной обработки металлов и сплавов, порошковая проволока малых диаметров получила распространение в сварочном производстве начиная с 50-х гг. XX в.

Конструкции и технологии изготовления порошковой проволоки

Конструкции


Порошковая проволока это порошковый реагент в металлической оболочке протяжённой длины.

ПП состоит, как правило, их двух основных частей: порошкового наполнителя (сердечника) и тонкостенной металлической оболочки.


В качестве сердечника ПП используют разнообразные сыпучие материалы, применяемые в металлургическом и сварочном производстве, к которым предъявляется единственное требование с точки зрения технологии производства способность к помолу до фракции не более 3÷4 мм.


В настоящее время имеются сведения о промышленном использовании в металлургии примерно девятнадцати химических элементов в виде порошковых проволок, при этом различают около сорока вариантов наполнителей.


Металлическая оболочка выполняет несколько важных функций: защищает порошкообразные реагенты от воздействия атмосферы и влаги во время хранения и транспортировки; предохраняет от окисления при прохождении через слои шлака на поверхности металла; обеспечивает соответствующую жесткость проволоки, необходимую для пробивания шлакового слоя; задерживает непосредственный контакт реагентов с жидкой сталью, что позволяет путем изменения скорости введения проволоки и толщины оболочки, регулировать глубину погружения присаживаемых добавок.


В качестве металлической оболочки используют стальную холоднокатаную ленту из сталей марок 08кп, 08пс, 08Ю по ГОСТ 503. Толщина ленты в металлургической ПП 0,3÷0,5 мм, в сварочной ПП 0,15÷1,5 мм.


На сегодняшний день разработано множество конструкций металлургической ПП. Рассмотрим некоторые из них (см. рис. 5).


На рис. 5а изображена "классическая" конструкция ПП с фальцевым замковым (ФЗ) соединением краёв оболочки 2. Данная конструкция является наиболее распространённой и простой в изготовлении, производится многими предприятиями, кроме того, она является базовой для остальных конструкций. В качестве замка применён одинарный лежачий фальц 4, утопленный во внутрь проволоки. К недостаткам данного замка следует отнести наличие только одного стопорящего порожка 5 и то, что внутренняя петля фальца 3 не полностью обжимается в процессе прокатки проволоки, так как силовое воздействие инструмента (ролика) происходит только с одной стороны замка. Данные недостатки в случае неплотного заполнения порошком 1 и малой ширины фальца приводят к раскрытию замка вследствие больших скручивающих деформаций в процессе размотки проволоки из бунта трайб-аппаратом.


Для предотвращения раскрытия фальцевого замка, его иногда делают выпуклым с двумя стопорящими порожками 5. Подобный вариант ПП изготавливается на "Чепецком механическом заводе" (рис. 5 в), а также подобная конструкция замка применена в ПП по патенту фирмы "Affival" (рис. 5и).


Рис. 5


Для повышения плотности укладки порошкового наполнителя на металлической оболочке проволоки иногда делают продольное углубление-гофр 6 так называемый уплотняющий "зиг" (рис. 5б). Зиг прокатывается после того, как будет закрыт замок на оболочке, но перед калибровкой проволоки; металл зига внедряется в порошковый сердечник и уплотняет его. В известных конструкциях зиг может располагаться диаметрально противоположно замку, под углом 90° к нему, рядом с замком. Как правило, бывает от одного до двух зигов. Недостатками данной конструкции являются: во-первых, повышенная металлоёмкость проволоки при прочих равных условиях; во-вторых, в процессе намотки проволоки на катушку и при размотке из бунта происходит раскрытие зига и, тем самым, ослабляется замок, что может привести к высыпанию наполнителя из проволоки.


Украинская фирма "КОИН" совместно с "ИЭС им. Патона" разработала конструкцию ПП, в которой происходит образование дополнительного гофра 7, прилегающего к замку по всей его длине и придающего проволоке дополнительную жёсткость (рис. 5 г). По мнению авторов, это препятствует раскрытию замка и просыпанию порошка во время размотки ПП из бунтов. Данная схема является одной из самых надёжных.


Следующую конструкцию ПП (рис. 5д) отличает стоячий фальц 4, утопленный по радиусу внутрь трубчатой оболочки, и сомкнутые гофры 7, зажимающие его между собой, образующие таким образом замкнутое соединение в виде усиленного ребра. Ребро увеличивает продольную жёсткость готовой ПП, повышая тем самым проникающую способность профиля при введении в жидкий металл. Данная конструкция позволяет изготавливать несколько смежных размеров проволоки из ленты одной ширины путём регулирования величины утапливания стоячего фальца внутрь трубчатой оболочки. На взгляд авторов, утопленное внутрь трубчатой оболочки замковое соединение и отсутствие открытого продольного гофра на готовой ПП стабилизирует подачу проволоки трайб-аппаратом в ковш. Данной конструкции присущ тот недостаток, что невозможно плотно обжать утопленный внутрь замок, а, значит, он будет ненадёжным и может произойти его раскрытие.


Другую конструкцию ПП (рис. 5e) отличает то, что трубчатая оболочка формируется с перекрытием продольных кромок оболочки внахлёст, при формировании дополнительного внутреннего гофра 7 внешнюю часть оболочки в зоне нахлёста прижимают к стороне гофра и подвергают заготовку обработке до смыкания сторон дополнительного гофра и зажатия между ними участка оболочки с зоной нахлёста. При этом образуется замковое соединение в виде стоячего фальца 4, утопленного внутрь оболочки. По мнению авторов, данная ПП, благодаря большой жёсткости, обладает повышенной проникающей способностью при введении её в жидкий металл и лучше противостоит скручивающим деформациям, возникающим при статической размотке проволоки трайб-аппаратом. Этой конструкции ПП присущ тот же самый недостаток, а именно то, что невозможно плотно обжать утопленный внутрь замок, следовательно, он будет ненадёжным и может произойти его раскрытие.


На рис. 5 ж показано сечение ПП, очень похожей на предыдущий вариант. В данной конструкции заполненную порошком оболочку обжимают до соединения кромок внахлёст, а внутренний гофр формируется в месте соединения кромок путём обжатия оболочки до соприкосновения боковых стенок полученного гофра. В этом состоит сходство с ранее рассмотренной ПП. Отличие заключается в том, что воздействие ролика, формирующего гофр, осуществляется примерно посередине зоны нахлёста боковых кромок, в то время, как по предыдущему варианту ролик воздействует на зону нахлёста по краю наружной кромки. Авторы этой ПП имели целью решить задачу получения качественного замкового соединения и исключения при этом самостоятельной операции по уплотнению порошкового наполнителя, так как она совмещается с операцией формирования замкового соединения. Данной ПП присущи все ранее рассмотренные недостатки.


Голландская фирма "Hoogovens groep" предложила оригинальную конструкцию порошкового наполнителя в металлической оболочке протяжённой длины, которую отличает нижеследующее (рис. 5 з): края заполненного порошком металлического желоба соединяются внахлёст и полученная трубчатая конструкция подвергается дальнейшей прокатке, в результате которой образуется спиралевидная оболочка, содержащая как минимум два слоя. Далее заготовка пропускается через индуктор, в котором нагревается до 650÷750 °С, после чего подаётся в редуцирующие ролики (расположенные под углом 120° друг к другу), в которых происходит волочение проволоки и одновременное сваривание слоев спиралевидной металлической оболочки между собой. Таким образом, образуется герметичная оболочка, предохраняющая порошковый наполнитель от воздействия внешних факторов. По заявлению авторов, полученная продукция может быть использована как металлургическая ПП, а также как заготовка для производства сварочной ПП.


Фирма "Affival" (бывшая "Vallourec Solesmes") разработала двухслойную ПП (см. рис. 5 и). Её отличает то, что внутри металлической оболочки коаксиально располагаются по крайней мере два различных порошковых сердечника. При этом внутренний сердечник отделён от внешнего промежуточной металлической оболочкой, сделанной из того же или другого металла, что и внешняя оболочка. Применение двухслойной ПП позволяет заменить ввод в расплав двух обычных ПП с разными наполнителями.


Первоначально проволока "Affival" была разработана с прямоугольным сечением, в ней фальцевый замок с двумя стопорящими порожками смещён от центра широкой грани к одному из рёбер. Прямоугольная форма сечения ПП предназначена прежде всего для повышения коэффициента заполнения оболочки наполнителем, а также способствует увеличению плотности укладки проволоки при её намотке на катушку. Однако такую проволоку можно применять только в режиме динамической размотки трайб-аппаратом (т.е. размотка с вращающейся катушки), так как в случае стационарной размотки (из неподвижного бунта) происходят значительные крутильные деформации, ведущие к раскрытию металлической оболочки.


Конструкции сварочной ПП весьма разнообразны; наиболее часто встречающиеся из них показаны на рис. 6 . Наибольшее распространение получила трубчатая ПП (рис. 6 а), составляющая 70÷80% от общего выпускаемого объёма. Сложные конструкции ПП (рис. 6 г – 6 м) разработаны для более равномерного плавления проволоки по её сечению (оболочки и наполнителя) и улучшения расплавленного металла при сварке. В них металлическая лента (а также дополнительно введённая сплошная проволока) равномерно распределена по сечению ПП, тем самым увеличена доля присадочного металла внутри сечения, что приближает строение ПП к строению электрода, у которого покрытие расположено вокруг стержня.



Рис. 6. а - трубчатая; б - трубчатая с перекрытием; в - трубчатая бесшовная; г - с одной загнутой кромкой; д - с двумя загнутыми кромками; е усложнённая; ж -двухслойная; з - комбинированная с металлическим сердечником; и - четырёхзагибная; к - сложнозагибная; л - сложнозагибная; м комбинированная с тремя металлическими проволоками внутри


Применение трубчатой ПП с перекрытием и бесшовной (рис. 6 б и 6в) исключает высыпание порошкового наполнителя через продольный шов, а бесшовная ПП к тому же позволяет выполнять подводную сварку и применять при её изготовлении омеднение поверхности.


Двухслойная ПП (рис. 6 ж), выполненная с перекрытием, имеет наружный слой порошка из шлакообразующих компонентов, а внутренний из легирующих элементов и железного порошка. Это обеспечивает высокие сварочно-технологические свойства проволоки, надёжную защиту зоны дуги и расплавленного металла от воздействия атмосферного воздуха и даёт возможность получать металл сварного шва высокого качества, сохраняющий пластичность при отрицательных температурах.


Сварочная ПП рассмотренных конструкций изготавливается с конечной операцией волочения.


Технологии изготовления


В настоящее время в промышленном производстве применяется множество вариантов технологических процессов изготовления ПП, осуществляемых на комплексах ОПП (рис. 7). Техпроцессы различаются в основном числом переходов и способом формообразования металлической оболочки . Рассмотрим один из них на примере "классической" ПП.



Рис. 7. : 1 установка размотки штрипсов; 2 установка резки и сварки штрипсов; 3 -узел загрузки наполнителя; 4 прокатно-формовочный агрегат; 5 -укладчик витков проволоки; 6-установка намотки проволоки


Формообразование ПП происходит за несколько технологических переходов (рис. 8). В начале (а) из исходной плоской ленты (штрипса) формируется V-образный жёлоб с наклонёнными под углом 45° боковыми стенками, при этом одновременно образуются элементы (полочки) фальцевого замка (б). Далее из V-образного жёлоба профилируется U-образный жёлоб с вертикальными стенками (в). Эти два перехода осуществляются в блоке предварительной формовки, формообразующим инструментом являются прокатные ролики (валки).


На следующем этапе (г) в U-образный жёлоб засыпается порошковый наполнитель. Засыпка порошка осуществляется в узле загрузки. Инструментом является рабочий орган механизма загрузки (питателя), а также другие элементы, осуществляющие вспомогательные действия (отсечка уровня порошка, разравнивание и уплотнение наполнителя, протирание полочек замка от пыли и т.п.).


Рис. 8.


Заполненный порошком U-образный жёлоб поступает в блок окончательной формовки, в котором выполняются следующие технологические переходы: сближение краёв U-образного жёлоба (д); сближение (выпрямление) полочек ФЗ (е); предварительная завалка полочки ФЗ (ж); окончательная завалка полочки ФЗ (з); боковое обжатие вертикального фальца (и); предварительная завалка фальца (к); окончательная завалка фальца (л); калибровка проволоки (м). Инструментом, осуществляющим эти действия, как правило, являются прокатные ролики (валки) либо неподвижные матрицы-проводки.


На завершающей стадии формообразования ПП происходит многопроходная калибровка проволоки (н-п), за счёт которой достигается: уплотнение порошкового сердечника, плотное обжатие ФЗ, а также придание правильной (требуемой) геометрической формы поперечного сечения ПП и регламентируемых размеров. Калибровка проволоки происходит в тянуще-калибрующем устройстве, которое представляет собой совокупность прокатных клетей либо волочильных барабанов. Формообразующим инструментом служат прокатные ролики (валки) либо матрицы-волоки.


Далее проволока проходит через счётно-контрольное устройство, регистрирующее метраж изготовленной ПП. Затем ПП наматывается на катушку, при этом витки проволоки раскладываются с равномерным шагом посредством укладчика.