Основные части вертолета. Как устроен вертолёт. По типу применяемых двигателей

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ДОПОЛНИТЕЛЬНОГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ИНСТИТУТ УПРАВЛЕНИЯ И ИННОВАЦИЙ АВИАЦИОННОЙ ПРОМЫШЛЕННОСТИ

В.В. Дудник

КОНСТРУКЦИЯ ВЕРТОЛЕТОВ

Ростов-на-Дону

УДК 629.7 (075)

Д 81

Д 81 Дудник В.В. Конструкция вертолетов. – Ростов н/Д: Издательский дом ИУИ АП, 2005. – 158 с.

ISBN 5-94596-015-2

В учебном пособии излагаются: состав, назначение, устройство и процесс конструирования основных агрегатов и систем; конструктивно-силовые и кинематические схемы агрегатов, конструкций деталей и узлов агрегатов.

Для слушателей программы профессиональной переподготовки по направлению «Вертолетостроение», а также для специалистов-практиков.

Печатается по решению редакционно-издательского совета Института управления и инноваций

авиационной промышленности

Научный редактор:

доктор технических наук, профессор И.В.Богуславский

ISBN 5-94596-015-2

© Дудник В.В., 2005 г. © Издательский дом ИУИ АП, 2005 г.

ВВЕДЕНИЕ

В наши дни трудно представить себе человечество без летательных аппаратов. Достойное место в ряду воздушных судов занимают вертолеты – летательные аппараты тяжелее воздуха, использующие несущий винт для перемещения в воздушной среде. Так как вертолетостроение сравнительно молодая сфера деятельности в ней идет активное изменение конструкции и технологии изготовления агрегатов. За последние годы стали применяться такие нововведения как сверхкритические трансмиссионные валы, активные гасители шума и вибрации, многозамкнутые лонжероны лопастей, монококовые фюзеляжи, гребни хвостовой балки и ряд других. К сожалению, Россия по ряду причин отстала в применении некоторых инноваций. В соответствии с этим необходимо стремиться к тому, чтобы максимально использовать опыт, накопленный в мировом вертолетостроении.

В данном учебном пособии предпринята попытка восполнить пробелы в освещении современных технологий, поэтому им уделено несколько больше внимания.

Главы 5 и 8 написаны совместно с Олейником Николаем Ивановичем.

1. ОБЩИЕ СВЕДЕНИЯ О ВЕРТОЛЕТАХ

1.1. Классификация вертолетов

В настоящее время в мире производится несколько десятков типов вертолетов. Они имеют различное назначение, размеры и характеристики, однако основным критерием классификации вертолета принято считать его взлетную массу. Существует несколько мнений о весовой классификации. Зачастую она устанавливается законодательными актами того или иного государства. Так в российской гражданской авиации вертолеты разделены в зависимости от максимальной взлетной массы на четыре класса.

1 класс – 10т и более,

2 класс – от 5 до 10т,

3 класс - от 2 до 5т,

4 класс – до 2т.

На практике вертолеты чаще делят на сверхлегкие, легкие, средние, тяжелые. Здесь предлагается один из вариантов деления.

До 700кг – сверхлёгкие; 700-5000кг – лёгкие; 5000-15000кг – средние;

свыше 15000кг – тяжёлые.

Самым тяжелым вертолетом в мире был советский вертолет Ми-12 (105т), а среди серийных машин – Ми-26 (56т).

Несколько особняком в этом ряду стоят беспилотные вертолеты, использующиеся для разведки, мониторинга окружающей среды и сельхозобработки, взлетная масса которых колеблется от 80 до 1000кг.

Кроме того, вертолеты классифицируются по назначению как:

пассажирские; боевые; транспортные; сельскохозяйственные;

поисково-спасательные и другие.

Наличие на борту двигателей позволяет классифицировать воздушные суда по числу двигателей – одно, двух и трехдвигательные, и по типу – поршневые и газотурбинные.

Еще одной важной характеристикой является схема вертолета. Схему вертолета определяет способ уравновешивания реактивного момента несущего винта. В настоящее время применяют одно и двухвинтовую схему. Разрабатывавшиеся в Советском Союзе и США трех и даже четырехвинтовые схемы не нашли широкого применения.

Одновинтовая схема – предполагает наличие одного несущего винта и устройства, компенсирующего реактивный момент несущего винта. В качестве устройства компенсирующего реактивный момент обычно используется рулевой винт, но в некоторых случаях применяют и другие механизмы (рисунок 1а, б).

Двухвинтовая схема предполагает наличие двух несущих винтов, имеющих разнонаправленное вращение. Реактивные моменты таких винтов взаимно компенсируются. В свою очередь двухвинтовые вертолеты по расположению несущих винтов могут иметь:

соосную схему – несущие винты противоположного вращения располагаются один над другим (рисунок 1в);

продольную схему – синхронизированные между собой винты размещаются один впереди другого с наличием небольшой зоны перекрытия (рисунок 1г);

поперечную схему – винты располагаются справа и слева от фюзеляжа (рисунок 1д);

схему с пересекающимися винтами – две оси вращения наклонены под углом друг к другу (рисунок 1е).

В настоящее время в России преобладают вертолеты фирмы Камова и Миля. Первые вертолеты собственной разработки появились у Казанского вертолетного завода. Попытки разработки вертолетов легкого класса делаются на Украине. Основными европейскими производителями вертолетов являются консорциумы – Еврокоптер, состоящий из французской корпорации Еврокоптер Франц и немецкой Еврокоптер Дойчланд и АгустаВестланд, состоящий из итальянской ком-

пании Агуста и английской Вестланд. Корпорации Боинг, Сикорский и Белл являются наиболее крупными в США. Большую активность в этом секторе рынка последние годы проявляют компании Польши и ЮАР. В классе сверхлегких вертолетов успешно работают фирмы таких стран, как США, Бельгия, Италия, Канада. Японские фирмы Ямаха и Фуджи активно продвигают беспилотные сельскохозяйственные вертолеты.

Кроме того, следует отметить, что на североамериканском континенте большой популярностью пользуются другие винтокрылые летательные аппараты – одно-двухместные автожиры. Их производством занимается сразу несколько фирм.

Абсолютное большинство производителей вертолетов в мире использует одновинтовую схему. Летательные аппараты построенные по таким принципам создает фирма Миля. Соосную применяют на вертолетах фирмы Камова и на некоторых зарубежных беспилотных аппаратах. Поперечная схема применяется в настоящее время только на конвертопланах фирмы Белл, разработанных самостоятельно и в кооперации с фирмой Агуста. Продольную схему используют транспортные вертолеты фирмы Боинг. Схема с перекрещивающимися винтами является весьма сложной и применяется только фирмой Каман (США).

1.2. Создание вертолетов

Процесс создания нового вертолета или модификации существующего достаточно сложен и состоит из нескольких этапов (рисунок 2). Для принятия решения о начале проектирования вертолета или модификации должна накопится «критическая» масса требований. Эти требования вырабатывают различные службы:

инженерные – на основе анализа разработок других фирм и собственных исследовательских работ, подготовленных к внедрению;

маркетинга – на основе анализа текущих и перспективных потребностей рынка;

эксплуатации – на основе анализа замечаний и предложений эксплуатирующих организаций;

стилиста (дизайнера) – на основе анализа современных тенденций дизайна, с целью создания привлекательного облика вертолета.

Рисунок 1. Различные схемы расположения несущих винтов.

а – одновинтовая схема с рулевым винтом (вертолет Ми-28, Россия), б – одновинтовая схема с системой NOTAR (MD500, США), в – соосная (Ка-50, Россия), г – продольная (CH-47, США), д – поперечная (BA609, США-Италия), е - схема с пересекающимися винтами (K-MAX, США).

Требования зачастую находятся в противоречии друг с другом, поэтому после анализа их важности, срочности и стоимости вырабатывается компромиссный вариант, максимально отвечающий всем службам. На его основании осуществляется предварительное проектирование, в ходе которого выполняются аэродинамические и другие расчеты, определяется общая геометрия, состав оборудования, принимаются решения по наиболее важным техническим решениям, вырабатывается компоновка летательного аппарата. После выполнения предварительного производится рабочее проектирование. На этом этапе разрабатываются трехмерные модели деталей, узлов и агрегатов, выполняется их расчет на прочность, на основании которого принимается решение об облегчении или упрочнении элементов конструкции. На основании окончательной трехмерной модели составляется рабочая документация. Учитывая высокую степень компьютеризации авиационного производства, иногда производители используют упрощенную систему документации, в которой, например, чертеж детали показывает общий вид, но не имеет размерных данных. Потребители же такого чертежа всегда могут получить необходимую информацию с разработанной компьютерной модели расположенной в корпоративной сети. Результаты проектирования передаются в производство, где сперва происходит изготовление макетного образца, а затем и реального вертолета. Если модификация летательного аппарата не предполагает значительных изменений этап изготовления макетного образца может отсутствовать.

Летные и статические испытания подтверждают правильность расчетов. Следует отметить, что каждый этап, следующий после проектирования, приводит к частичному изменению конструкции вследствие устранения выявляемых недостатков. Результатом всей этой работы становится сертификат, разрешающий эксплуатацию летательного аппарата в той или иной стране мира. Для того, чтобы получить сертификат, воздушное судно должно соответствовать нормам летной годности, действующим на данной территории. Как правило, отдельно существуют нормы для гражданских и

военных вертолетов. Эти документы регламентируют показатели, которым должен удовлетворять весь аппарат или отдельные его агрегаты. Например, указывается какую величину ветра должен выдержать вертолет на том или ином режи-

Рисунок 2. Упрощенная схема процесса создания вертолета.

ме полета или какую шумность он не может превышать в зависимости от взлетного веса. Значительную часть норм составляют нормы прочности. Они рассматривают различные варианты нагружения аппарата в полете, на взлете и посадке, при стоянке и перемещении по аэродрому. Соответственно все случаи делятся на летные, посадочные и земные.

За последнее время в мире вертолетной техники произошло несколько значимых событий. Американская компания Kaman Aerospace объявила о намерении возобновить производство синхроптеров, Airbus Helicopters пообещала разработать первый гражданский вертолет с электродистанционным управлением, а немецкая e-volo - испытать 18-роторный двухместный мультикоптер. Чтобы не запутаться во всем этом разнообразии, мы решили составить краткий ликбез по основным схемам вертолетной техники.

Впервые идея летательного аппарата с несущим винтом появилась около 400 года нашей эры в Китае, однако дальше создания детской игрушки дело не пошло. Всерьез инженеры взялись за создание вертолета в конце XIX века, а первый вертикальный полет нового типа летательного аппарата состоялся в 1907 году, спустя всего четыре года после первого полета братьев Райт. В 1922 году авиаконструктор Георгий Ботезат испытал вертолет-квадрокоптер, разработанный по заказу Армии США. Это был первый в истории устойчиво управляемый полет техники такого типа. Квадрокоптер Ботезата сумел взлететь на высоту пяти метров и провел в полете несколько минут.

С тех пор вертолетная техника претерпела множество изменений. Появился класс винтокрылых летательных аппаратов, который сегодня делится на пять типов: автожир, вертолет, винтокрыл, конвертоплан и X-крыло. Все они отличаются конструкцией, способом взлета и полета, управлением несущим винтом. В этом материале мы решили рассказать именно о вертолетах и их основных типах. При этом за основу была взята классификация по компоновке и расположению несущих винтов, а не традиционная - по типу компенсации реактивного момента несущего винта.

Вертолет является винтокрылым летательным аппаратом, у которого подъемная и движущая силы создаются одним или несколькими несущими винтами. Такие винты располагаются параллельно земле, а их лопасти устанавливаются под определенным углом к плоскости вращения, причем угол установки может изменяться в достаточно широких пределах - от нуля до 30 градусов. Установка лопастей на ноль градусов называется холостым ходом винта или флюгированием. В этом случае несущий винт не создает подъемной силы.

Во время вращения лопасти захватывают воздух и отбрасывают его в направлении, противоположном движению винта. В результате перед винтом создается зона пониженного давления, а за ним - повышенного. В случае вертолета так возникает подъемная сила, которая очень похожа на образование подъемной силы фиксированным крылом самолета. Чем больше угол установки лопастей, тем большую подъемную силу создает несущий винт.

Характеристики несущего винта определяются двумя основными параметрами - диаметром и шагом. Диаметр винта определяет возможности вертолета по взлету и посадке, а также отчасти величину подъемной силы. Шаг винта - это воображаемое расстояние, которое воздушный винт пройдет в несжимаемой среде при определенном угле установки лопастей за один оборот. Последний параметр влияет на подъемную силу и скорость вращения ротора, которую на большей части полета летчики стараются держать неизменной, меняя только угол установки лопастей.

При полете вертолета вперед и вращении несущего винта по часовой стрелке, набегающий поток воздуха сильнее воздействует на лопасти с левой стороны, из-за чего возрастает и их эффективность. В результате левая половина окружности вращения винта создает большую подъемную силу, чем правая, и возникает кренящий момент. Для его компенсации конструкторы придумали - это особая система, которая уменьшает угол установки лопастей слева и увеличивает его справа, выравнивая таким образом подъемную силу по обе стороны винта.

В целом, вертолет имеет несколько преимуществ и несколько недостатков перед самолетом. К преимуществам относится возможность вертикального взлета и посадки на площадки, диаметр которых в полтора раза превосходит диаметр несущего винта. При этом вертолет может на внешней подвеске перевозить крупногабаритные грузы. Вертолеты отличаются и лучшей маневренностью, поскольку могут висеть вертикально, лететь боком или задом-наперед, поворачиваться на месте.

К недостаткам же относятся большее, чем у самолетов, потребление топлива, большая инфракрасная заметность из-за горячего выхлопа двигателя или двигателей, а также повышенная шумность. Кроме того, вертолетом в целом сложнее управлять из-за ряда особенностей. Например, летчикам вертолетов знакомы явления земного резонанса, флаттера, вихревого кольца, эффекта запирания несущего винта. Эти факторы могут приводить к разрушению или падению машины.

У вертолетной техники любых схем существует режим авторотации. Он относится к аварийным режимам. Это означает, что при отказе, например, двигателя несущий винт или винты при помощи обгонной муфты отсоединяются от трансмиссии и начинают свободно раскручиваться набегающим потоком воздуха, тормозя падение машины с высоты. В режиме авторотации возможна управляемая аварийная посадка вертолета, причем вращающийся несущий винт через редуктор продолжает раскручивать рулевой винт и генератор.

Классическая схема

Из всех типов вертолетных схем сегодня самой распространенной является классическая. При такой схеме машина имеет только один несущий винт, который может приводиться в движение одним, двумя или даже тремя двигателями. К этому типу, например, относятся ударные AH-64E Guardian, AH-1Z Viper, Ми-28Н, транспортно-боевые Ми-24 и Ми-35, транспортные Ми-26, многоцелевые UH-60L Black Hawk и Ми-17, легкие Bell 407 и Robinson R22.

При вращении несущего винта на вертолетах классической схемы возникает реактивный момент, из-за которого корпус машины начинает раскручиваться в сторону, противоположную вращению ротора. Для компенсации момента используют рулевое устройство на хвостовой балке. Как правило им является рулевой винт, но это может быть и фенестрон (винт в кольцевом обтекателе) или несколько воздушных сопел на хвостовой балке.

Особенностью классической схемы являются перекрестные связи в каналах управления, обусловленные тем, что рулевой винт и несущий приводятся одним и тем же двигателем, а также наличием автомата перекоса и множества других подсистем, ответственных за управление силовой установкой и роторами. Перекрестная связь означает, что при изменении какого-либо параметра работы воздушного винта, поменяются и все остальные. Например, при увеличении частоты вращения несущего винта возрастет и частота вращения рулевого.

Управление полетом осуществляется наклоном оси вращения несущего винта: вперед - машина полетит вперед, назад - назад, вбок - вбок. При наклоне оси вращения возникнет движущая сила и уменьшается подъемная. По этой причине для сохранения высоты полета летчику необходимо менять и угол установки лопастей. Направление полета задается изменением шага рулевого винта: чем он меньше, тем меньше компенсируется реактивный момент, и вертолет поворачивает в сторону, противоположную вращению несущего винта. И наоборот.

В современных вертолетах в большинстве случаев управление полетом по горизонтали осуществляется при помощи автомата перекоса. Например, для движения вперед летчик при помощи автомата уменьшает угол установки лопастей для передней половины плоскости вращения крыла и увеличивает - для задней. Таким образом сзади подъемная сила увеличивается, а спереди - уменьшается, благодаря чему изменяется наклон винта и появляется движущая сила. Такая схема управления полетом применяется на всех вертолетах почти всех типов, если на них установлен автомат перекоса.

Соосная схема

Второй по распространенности вертолетной схемой является соосная. В ней рулевой винт отсутствует, зато есть два несущих винта - верхний и нижний. Они располагаются на одной оси и вращаются синхронно в противоположных направлениях. Благодаря такому решению винты компенсируют реактивный момент, а сама машина получается несколько более устойчивой по сравнению с классической схемой. Кроме того, у вертолетов соосной схемы практически отсутствуют перекрестные связи в каналах управления.

Наиболее известным производителем вертолетов соосной схемы является российская компания «Камов». Она выпускает корабельные многоцелевые вертолеты Ка-27, ударные Ка-52 и транспортные Ка-226. Все они имеют по два винта, расположенных на одной оси друг под другом. Машины соосной схемы, в отличие от вертолетов классической схемы, способны, например, делать воронку, то есть выполнять облет цели по кругу, оставаясь на одном и том же расстоянии от нее. При этом носовая часть всегда остается развернутой в сторону цели. Управление рысканием осуществляется подтормаживанием одного из несущих винтов.

В целом управлять вертолетами соосной схемы несколько проще, чем обычными, особенно в режиме висения. Но существуют и свои особенности. Например, при выполнении петли в полете может случиться перехлест лопастей нижнего и верхнего несущего винтов. Кроме того, в проектировании и производстве соосная схема более сложна и дорога, чем классическая схема. В частности из-за редуктора, передающего вращение вала двигателя на винты, а также автомата перекоса, синхронно устанавливающего угол лопастей на винтах.

Продольная и поперечная схемы

Третьей по популярности является продольная схема расположения несущих винтов вертолета. В этом случае винты располагаются параллельно земле на разных осях и разнесены друг от друга - один находится над носовой частью вертолета, а другой - над хвостовой. Типичным представителем машин такой схемы является американский тяжелый транспортный вертолет CH-47G Chinook и его модификации. Если винты располагаются на законцовках крыльев вертолета, то такая схема называется поперечной.

Серийных представителей вертолетов поперечной схемы сегодня не существует. В 1960-1970-х годах конструкторское бюро Миля разрабатывало тяжелый грузовой вертолет В-12 (также известен, как Ми-12, хотя этот индекс неверен) поперечной схемы. В августе 1969 года прототип В-12 установил рекорд грузоподъемности среди вертолетов, подняв на высоту 2,2 тысячи метров груз массой 44,2 тонны. Для сравнения самый грузоподъемный в мире вертолет Ми-26 (классическая схема) может поднимать грузы массой до 20 тонн, а американский CH-47F (продольная схема) - массой до 12,7 тонны.

У вертолетов продольной схемы несущие винты вращаются в противоположных направлениях, однако это компенсирует реактивные моменты лишь отчасти, из-за чего в полете летчикам приходится учитывать возникающую боковую силу, уводящую машину с курса. Движение в стороны задается не только наклоном оси вращения несущих винтов, но и разными углами установки лопастей, а управление рысканием производится за счет изменения частоты вращения роторов. Задний винт у вертолетов продольной схемы всегда располагается чуть выше переднего. Это сделано для исключения взаимного влияния от их воздушных потоков.

Кроме того, на определенных скоростях полета вертолетов продольной схемы иногда могут возникать значительные вибрации. Наконец, вертолеты продольной схемы оснащаются сложной трансмиссией. По этой причине такая схема расположения винтов распространена мало. Зато вертолеты продольной схемы меньше других машин подвержены возникновению вихревого кольца. В этом случае во время снижения воздушные потоки, создаваемые винтом, отражаются от земли вверх, затягиваются винтом и снова направляются вниз. При этом подъемная сила несущего винта резко снижается, а изменение частоты вращения ротора или увеличение угла установки лопастей эффекта практически не оказывает.

Синхроптер

Сегодня вертолеты, построенные по схеме синхроптера, можно отнести к самым редким и наиболее интересными с конструктивной точки зрения машинами. Их производством до 2003 года занималась только американская компания Kaman Aerospace. В 2017 году компания планирует возобновить выпуск таких машин под обозначением K-Max. Синхроптеры можно было бы отнести к вертолетам поперечной схемы, поскольку валы двух их винтов расположены по бокам корпуса. Однако оси вращения этих винтов расположены под углом другу к другу, а плоскости вращения - пересекаются.

У синхроптеров, как у вертолетов соосной, продольной и поперечной схем, рулевой винт отсутствует. Несущие же винты вращаются синхронно в противоположные стороны, а их валы связаны друг с другом жесткой механической системой. Это гарантированно предотвращает столкновение лопастей при разных режимах и скоростях полета. Впервые синхроптеры были изобретены немцами во время второй мировой войны, однако серийное производство велось уже в США с 1945 года компанией Kaman.

Направлением полета синхроптера управляют исключительно изменением угла установки лопастей винтов. При этом из-за перекрещивания плоскостей вращения винтов, а значит сложения подъемных сил в местах перекрещивания, возникает момент кабрирования, то есть подъема носовой части. Этот момент компенсируется системой управления. В целом же, считается, что синхроптером проще управлять в режиме висения и на скоростях больше 60 километров в час.

К достоинствам таких вертолетов относится экономия топлива за счет отказа от рулевого винта и возможность более компактного размещения агрегатов. Кроме того, синхроптерам характерна большая часть положительных качеств вертолетов соосной схемы. К недостаткам же относится необычайная сложность механической жесткой связи валов винтов и системы управления автоматами перекоса. В целом это делает вертолет дороже, по сравнению с классической схемой.

Мультикоптер

Разработка мультикоптеров началась практически одновременно с работами над вертолетом. Именно по этой причине первым вертолетом, совершившим управляемый взлет и посадку стал в 1922 году квадрокоптер Ботезата. К мультикоптерам относят машины, как правило имеющие четное количество несущих винтов, причем их должно быть больше двух. В серийных вертолетах сегодня схема мультикоптеров не используется, однако она чрезвычайно популярна у производителей малой беспилотной техники.

Дело в том, что в мультикоптерах используются винты с неизменяемым шагом винта, причем каждый из них приводится в движение своим двигателем. Компенсация реактивного момента производится вращением винтов в разные стороны - половина крутится по часовой стрелке, а другая половина, расположенная по диагонали, - в противоположном направлении. Это позволяет отказаться от автомата перекоса и в целом значительно упростить управление аппаратом.

Для взлета мультикоптера частота вращения всех винтов увеличивается одинаково, для полета в сторону - вращение винтов на одной половине аппарата ускоряется, а на другой - замедляется. Поворот мультикоптера производится замедлением вращения, например, винтов, крутящихся по часовой стрелке или наоборот. Такая простота конструкции и управления и послужила основным толчком к созданию квадрокоптера Ботезата, однако последующее изобретение рулевого винта и автомата перекоса практически затормозило работы над мультикоптерами.

Причиной же, по которой сегодня не существует мультикоптеров, предназначенных для перевозки людей, является безопасность полетов. Дело в том, что в отличие от всех остальных вертолетов, машины с несколькими винтами не могут совершать аварийную посадку в режиме авторотации. При отказе всех двигателей мультикоптер становится неуправляемым. Впрочем, вероятность такого события невысока, однако отсутствие режима авторотации является главным препятствием для прохождении сертификации на безопасность полетов.

Впрочем, в настоящее время немецкая компания e-volo занимается разработкой мультикоптера с 18 роторами. Этот вертолет предназначен для перевозки двух пассажиров. Как ожидается, он совершит первый полет в ближайшие несколько месяцев. По расчетам конструкторов, прототип машины сможет находиться в воздухе не больше получаса, однако этот показатель планируется довести по меньшей мере до 60 минут.

Следует также отметить, что помимо вертолетов с четным количеством винтов существуют и мультикоптерные схемы с тремя и пятью винтами. У них один из двигателей расположен на отклоняемой в стороны платформе. Благодаря этому осуществляется управление направлением полета. Впрочем, в такой схеме становится сложнее гасить реактивный момент, поскольку два винта из трех или три из пяти всегда вращаются в одном направлении. Для нивелирования реактивного момента некоторые из винтов вращаются быстрее, а это создает ненужную боковую силу.

Скоростная схема

Сегодня наиболее перспективной в вертолетной технике считается скоростная схема, позволяющая вертолетам летать на существенно большей скорости, чем могут современные машины. Чаще всего такую схему называют комбинированным вертолетом. Машины этого типа строятся по соосной схеме или с одним винтом, однако имеют небольшое крыло, создающее дополнительную подъемную силу. Кроме того, вертолеты могут быть оснащены толкающим винтом в хвостовой части или двумя тянущими на законцовках крыла.

Ударные вертолеты классической схемы AH-64E способны развивать скорость до 293 километров в час, а соосные Ка-52 - до 315 километров в час. Для сравнения, комбинированный вертолет - демонстратор технологий Airbus Helicopters X3 с двумя тянущими винтами может разгоняться до 472 километров в час, а его американский конкурент с толкающим винтом - Sikorksy X2 - до 460 километров в час. Перспективный разведывательный скоростной вертолет S-97 Raider сможет летать на скоростях до 440 километров в час.

Строго говоря, комбинированные вертолеты относятся скорее не к вертолетам, а к другому типу винтокрылых летательных аппаратов - винтокрылам. Дело в том, что движущая сила у таких машин создается не только и не столько несущими винтами, сколько толкающими или тянущими. Кроме того, за создание подъемной силы отвечают и несущие винты, и крыло. А на больших скоростях полета управляемая обгонная муфта отключает несущие винты от трансмиссии и дальнейший полет идет уже в режиме авторотации, при которой несущие винты работают, фактически, как крыло самолета.

В настоящее время разработкой скоростных вертолетов, которые в перспективе смогут развивать скорость свыше 600 километров в час, занимаются несколько стран мира. Помимо Sikorsky и Airbus Helicopters такие работы ведут российские «Камов» и конструкторское бюро Миля (Ка-90/92 и Ми-X1 соответственно), а также американская Piacesky Aircraft. Новые комбинированные вертолеты смогут совместить в себе скорость полета турбовинтовых самолетов и вертикальные взлет и посадку, присущие обычным вертолетам.

Фотография: Official U.S. Navy Page / flickr.com

Устройство одновинтового вертолета показано на
(рис.159)
1-лопасть несущего винта, 2-втулка и автомат-перекос, 3-главный редуктор, 4-соединительный вал, 5-промежуточный редуктор, 6-вал ведущий к хвостовому винту, 7-хвостовой винт, 8-редуктор хвостового винта, 9-опора, 10-хвостовая балка, 11-бак для бензина, 12-вентилятор, 13-основное шасси, 14-выхлопной колектор с глушителем, 15-бак для масла, 16-двигатель, 17-передняя стойка шасси, 18-приборная доска, 19-сиденья лётчиков

В качестве силовых установок вертолетов применяют поршневые двигатели воздушного охлаждения или турбовинтовые реактивные двигатели. Основными органами управления вертолетом в кабине летчика

(рис. 160)
1-доска приборов, 2-ручка управления, 3-педали, 4-рычаг "шаг-газ" , 5-ручка тормоза несущего винта, 6-ручка управления муфтой сцепления, 7-пульт управления, 8-сиденья пилотов, 9-сиденья пассажиров

являются ручка управления, педали ножного управления, рычаг управления общим шагом и корректор газа (рычаг «Шаг-газ»). Ручка управления расположена перед сиденьем летчика и связана с автоматом-перекосом. Отклонением ручки от нейтрального положения вперед достигается наклон вертолета на пикирование и движение его вперед; отклонением назад - наклон вертолета на кабрирование и движение его назад; вправо - наклон вертолета вправо и движение его вправо; влево - наклон вертолета влево и движение его влево.

Педали ножного управления расположены впереди сиденья летчика. Нажимая педали, летчик изменяет шаг рулевого винта, осуществляя тем самым путевое управление вертолетом. Рычаг управления общим шагом расположен обычно слева от сиденья летчика. С его помощью летчик управляет одновременно изменением шага (установочного угла) всех лопастей несущего винта. Движение рычага вверх соответствует увеличению шага и подъему вертолета. Изменение положения рычага общего шага одновременно вызывает и изменение частоты вращения двигателя.Лопасти несущих винтов вертолетов имеют шарнирную подвеску к втулке винта, которая позволяет им совершать повороты трех видов: вокруг продольной оси, изменяя свой установочный угол ф, называемый также шагом лопасти

(рис. 161, а)

Вокруг горизонтального шарнира, совершая маховые движения (рис. 161, б), причем взмах вверх и вниз конструктивно ограничен упорами (нижний упор ограничивает свисание лопасти при стоянке вертолета); вокруг вертикального шарнира (рис. 161, в). В настоящее время управление несущим винтом большинства вертолетов осуществляется с помощью автомата-перекоса, изобретенного Б. Н. Юрьевым. На

(рис. 162)
1,12-поводки тяг поперечного и продольного управления, 2,13-оси, 3-вращающееся кольцо, 4-шарики, 5.6-невращающееся кольца, 7,8-рычаги шлиц-шарнира, 9-ползун, 10,11-поводок и тяга осевого шарнира лопастей, 14-вал ротора, 15-рычаг общего шага


Схематически показано устройство автомата-перекоса. На вращающемся валу 14 несущего винта (ротора) имеется ползун 9,-который не вращается, но может двигаться вверх и вниз. На ползуне с помощью универсального шарнира с осями 2 и 13 подвешено кольцо 5. Через шарики 4 невращающееся кольцо 5 связано с вращающимся кольцом 3, т. е. кольцо 5, шарики 4 и кольцо 3 образуют шарикоподшипник. Кольцо 3 с помощью шлиц-шарнира (рычаги 7 и 8) соединено с валом несущего винта и вращается с такой же, как и вал частотой. Через тяги 11 вращающееся кольцо соединено с поводками 10 осевых шарниров лопастей. При движении ползуна 9 вверх угол установки лопастей, будет увеличиваться, а при движении ползуна вниз - уменьшаться. Чтобы понять, как влияет изменение шага лопастей на полет вертолета, рассмотрим вертикальный полет. Вертикальный полет достигается изменением общего шага лопастей. При этом угол атаки всех лопастей одновременно возрастает или уменьшается на одинаковую величину, что соответствует увеличению или уменьшению подъемной силы, а следовательно, подъему или снижению вертолета. Из рисунка видно, что если рычаг общего шага 15 поднять вверх, то поднимутся вверх и оба кольца - невращающиеся и вращающееся; шаг лопастей увеличится, в результате чего вертолет будет подниматься. Если же рычаг опустить вниз, то вертолет будет снижаться.

ОБЩАЯ ХАРАКТЕРИСТИКА ВЕРТОЛЕТА Ми-8Т

1. ОБЩИЕ СВЕДЕНИЯ О ВЕРТОЛЕТЕ

Вертолет Ми-8 предназначен для перевозки различных грузов внутри грузовой кабины и на внешней подвеске, почты, пассажиров, а также для проведения строительно-монтажных и других работ в труднодоступной мест­ности.

Рис. 1.1. Вертолет Ми-8 (общий вид)

Вертолет (рис. 1.1) спроектирован по одновинтовой схеме с пятилопастным несущим и трехлопастным рулевым винтами. На вертолете установле­ны два турбовинтовых двигателя ТВ2-117А со взлетной мощностью 1500 л.с. каждый, что обеспечивает высокую безопасность полетов, так как полет воз­можен и при отказе одного из двигателей.

Вертолет эксплуатируется в двух основных вариантах: пассажирском Ми-8П и транспортном Ми-8Т. Пассажирский вариант вертолета предназна­чен для межобластных и местных перевозок пассажиров, багажа, почты и малогабаритных грузов. Он рассчитан на перевозку 28 пассажиров. Тран­спортный вариант предусматривает перевозку грузов массой до 4000 кг или пассажиров в количестве 24 человек. По желанию заказчика пас­сажирский салон вертолета может быть переоборудован в салон с по­вышенным комфортом на 11 пассажиров.

Пассажирский и транспортный варианты вертолета могут быть переобо­рудованы в санитарный вариант и в вариант для работы с внешней подвеской.

Вертолет в санитарном варианте позволяет перевозить 12 лежачих боль­ных и сопровождающего медработника. В варианте для работы с внешней подвеской осуществляется перевозка крупногабаритных грузов массой до 3000 кг вне фюзеляжа.

Для перелетов вертолета на большие дальности предусмотрена установка в грузовой кабине одного или двух дополнительных топливных баков.

Существующие варианты вертолета снабжены электролебедкой, позво­ляющей с помощью бортовой стрелы производить подъем (спуск) на борт вер­толета грузов массой до 150 кг, а также при наличии полиспаста затягивать в грузовую кабину колесные грузы массой до 3000 кг.

Экипаж вертолета состоит из двух пилотов и бортмеханика.

При создании вертолета особое внимание было уделено высокой надежно­сти, экономичности, простоты в обслуживании и эксплуатации.

Безопасность полетов на вертолете Ми-8 обеспечивается:

Установкой на вертолете двух двигателей ТВ2-117А(АГ), надежностью работы этих двигателей и главного редуктора ВР-8А;

Возможностью совершать полет в случае отказа одного из двигателей, а также перейти на режим авторотации (самовращения несущего винта) при отказе обоих двигателей;

Наличием отсеков, изолирующих двигатели и главный редуктор с по­мощью противопожарных перегородок;

Установкой надежной противопожарной системы, обеспечивающей туше­ние пожара в случае его возникновения как одновременно во всех отсеках, так и в каждом отсеке в отдельности;

Установкой дублирующих агрегатов в основных системах я оборудовании вертолета;

Надежными и эффективными противообледенительными устройствами ло­пастей несущего и рулевого винтов, воздухозаборников двигателей и лобо­вых стекол кабины экипажа, что позволяет совершать полет в условиях об­леденения;

Установкой аппаратуры, обеспечивающей простое и надежное пилотиро­вание и посадку вертолета в различных метеорологических условиях;

Приводом основных агрегатов систем от главного редуктора, обеспечива­ющим работоспособность систем при отказе двигателя:

Возможностью быстрого покидания вертолета после его посадки пасса­жирами и экипажем в аварийных случаях.

2. ОСНОВНЫЕ ДАННЫЕ ВЕРТОЛЕТА

Летные данные

(транспортный и пассажирский варианты)

Взлетная масса (нормальная), кг.............. 11100

Максимальная скорость полета (по прибору), км/ч, 250

Статический потолок, м............................ 700

Крейсерская скорость полета по прибору на высоте
500 м, км/ч ………………………………………………220

Экономическая скорость полета (по прибору), км/ч. 120


топливом 1450 кг, км................................ 365


варианте с заправкой топливом 2160 кг, км. . .620

Дальность полета (на высоте 500 м) в перегоночном
варианте с заправкой топливом 2870 кг, км... 850

Дальность полета (на высоте 500 м) с заправкой
топливом 2025 кг (подвесные баки увеличенной
вместимости), км................................................ 575

Дальность полета (на высоте 500 м) в перегоночном
варианте с заправкой топливом 2735 кг (подвес­ные баки

увеличенной вместимости), км.... 805

Дальность полета (на высоте 500 м) в перегоночном
варианте с заправкой топливом 3445 кг (подвесные баки

увеличенной вместимости), км.... 1035

Примечание. Дальность полета рассчитана с учетом 30-минутного остатка топлива после посадки

Геометрические данные

Длина вертолета, м:

без несущего и рулевого винтов.................. 18,3

с вращающимися несущим и рулевым винтами …25,244

Высота вертолета, м:

без рулевого винта........................................ 4,73

с вращающимся рулевым винтом................ 5,654

Расстояние от конца лопасти несущего винта до ­
хвостовой балки на стоянке, м..................... 0,45

Расстояние от земли до нижней точки фюзеляжа

(клиренс), м................................................... 0,445

Площадь горизонтального оперения, м 2 ….. 2

Стояночный угол вертолета................. 3°42"

Фюзеляж

Длина грузовой кабины, м:

без грузовых створок............................ 5,34

с грузовыми створками на уровне 1 м от пола 7,82

Ширина грузовой кабины, м:

на полу................................................... 2,06

по коробам отопления........................... 2,14

максимальная......................................... 2,25

Высота грузовой кабины, м.................. 1,8

Расстояние между силовыми балками пола, м … 1,52

Размер аварийного люка, м…………………… 0,7 X1

Колея погрузочных трапов, м.............. 1,5±0,2

Длина пассажирской кабины, м............ 6,36

Ширина пассажирской кабины (по полу), м... 2,05

Высота пассажирской кабины, м 1,8

Шаг кресел, м.................................................. 0,74

Ширина прохода между креслами, м... 0,3

Размеры гардероба (ширина, высота, глубина), м 0,9 X1,8 X 0,7
» сдвижной двери (ширина, высота), м. . 0,8 X1.4
» проема, по заднюю входную дверь в пассажирском

варианте (ширина, высота), м.......... 0,8 X1>3

Размер аварийных люков в пассажирском

варианте, м............................................. 0,46 X0,7

Размер кабины экипажа, м.................... 2,15 X2,05 X1,7

Регулировочные данные

Угол установки лопастей несущего винта (по указа­телю шага винта):

минимальный................................................. 1°

максимальный........................................ 14°±30"

Угол отгиба триммерных пластин лопастей винта -2 ±3°

» установки лопастей рулевого винта (на r=0,7) *:

минимальный (левая педаль до упора) ................... 7"30"±30"

максимальный (правая педаль до упора)………….. +21°±25"

* r- относительный радиус

Весовые и центровочные данные

Взлетная масса, кг:

максимальная для транспортного варианта …….. 11100

» с грузом на внешней подвеске …………… 11100

транспортный вариант.......................... 4000

на внешней подвеске.............................. 3000

пассажирский вариант (человек).......... 28

Масса пустого вертолета, кг:

пассажирский вариант........................... 7370

транспортный »................................ 6835

Масса служебной нагрузки, в том числе:

масса экипажа, кг................................... 270

» масла, кг........................................................... 70

масса продуктов, кг.............................................. 10

» топлива, кг......................................................... 1450 - 3445

» коммерческой нагрузки, кг............................... 0 - 4000

Центровка пустого вертолета, мм:

транспортный вариант........................................... +133

пассажирский » ....................................... +20

Допустимые центровки для загруженного вертолета, мм:

передняя.................................................................. +370

задняя...................................................................... -95

3. АЭРОДИНАМИЧЕСКИЕ И ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЕРТОЛЕТА

По аэродинамической схеме вертолет Ми-8 представляет собой фюзеляж с пятилопастным несущим, трехлопастным рулевым винтами и неубирающимися шасси.

Лопасти несущего винта прямоугольной формы в плане с хордой, равной 0,52 м. Прямоугольная форма в плане в аэродинамическом отношении счи­тается хуже других, но она проста в производстве. Наличие триммерных пластин на лопастях позволяет изменять их моментные характери­стики.

Профиль лопасти является важнейшей геометрической характеристикой несущего винта. На вертолете подобраны различные профили по длине ло­пасти, что заметно улучшает не только аэродинамические характеристики несущего винта, но и летные свойства вертолета. От 1-го до 3-го сечения при­менен профиль NACA-230-12, а от 4-го до 22-го - профиль NACA-230-12M (модифицированный) *. У профиля NACA-230-12M число Мкр = 0,72 при угле атаки нулевой подъемной силы. При увеличении углов атаки a°(рис. 1.2) Мкр уменьшается и при наивыгоднейшем угле атаки, при котором коэффициент подъемной силы С у = 0,6, Мкр = 0,64. В этом случае крити­ческая скорость в стандартной атмосфере над уровнем моря составит:

V KP == а Мкр = 341 0,64 = 218 м/с, где a- скорость звука.

Следовательно, на концах лопастей мож­но создавать скорость менее 218 м/с, при которой не будет появляться скачков уп­лотнения и волнового сопротивления. При оптимальной, частоте вращения несущего винта 192 об/мин окружная скорость кон­цов лопастей составит:

U = wr = 2 prn / 60 = 213,26 м/с, где w - угловая скорость;

r- радиус окруж­ности, описываемый концом лопасти.

Рис. 1.2. Изменение коэффициента подъемной силы С у от углов ата­ки a° и числа М профиля NACA-230-12M

Отсюда видно, что окружная скорость близка к критической, но не превышает ее. Лопасти несущего винта вертолета име­ют отрицательную геометрическую крутку, изменяющуюся по линейному закону от 5° у 4-го сечения до 0° у 22-го. На участке между 1-ми 4-м сечениями крутка отсутст­вует и установочный угол сечений лопасти на этом участке равен 5°. Крутка лопасти на такую большую величину существенно улучшила ее аэродинамические свойства и летные характеристики вертолета, в связи с чем более равномерно распределяется подъемная сила по длине лопасти.

* Отсек от 3-го до 4-го сечения является пе­реходным. Профиль лопасти несущего винта - смотри рис. 7.5.

Лопасти винта имеют переменную как абсолютную, так и относительную толщину профиля. Относительная толщина профиля с составляет в комле 13%, на участке от г=_0,23до 7=0,268- 12%, а на участке от г = 0,305 до конца лопасти- 11,38%. Уменьшение толщины лопасти к ее концу улучшает аэродинамические свойства вин­та в целом за счет увеличения критиче­ской скорости и Мкр концевых частей ло­пасти. Уменьшение толщины лопасти к концу приводит к уменьшению лобового сопротивления и снижению потребного кру­тящего момента.

Несущий винт вертолета имеет сравни­тельно большой коэффициент заполнения - 0,0777. Такой коэффициент дает возможность создать большую тягу при умеренном диаметре винта и тем самым удерживать в полете лопасти на небольших установочных углах, при которых углы атаки ближе к наивы­годнейшим на всех режимах полета. Это позволило увеличить к. п. д. винта и отодвинуть срыв потока на большие скорости.

Рис. 1.3. Поляра несущего винта вертолета на режиме висения: 1 - без влияния земли; 2 - с влиянием земли.

Аэродинамическая характеристика несущего винта вертолета представ­лена в виде его поляры (рис. 1.3), которая показывает зависимость коэффи­циента тяги Ср и коэффициента крутящего момента т кр от величины общего шага несущего винта <р. По поляре видно, что чем больше общий шаг несуще­го винта, тем больше коэффициент крутящего момента, а следовательно, больше коэффициент тяги. При наличии «воздушной подушки» тяга несущего винта будет больше, чем без нее при том же шаге винта и коэффициенте кру­тящего момента.

Лопасти рулевого винта прямоугольной формы в плане с профилем NACA-230M не имеют геометрической крутки. Наличие у втулки рулевого винта совмещенного горизонтального шарнира типа «кардан» и компенсатора взмаха позволяет обеспечить более ровное перераспределение подъемной си­лы по ометаемой винтом поверхности в полете.

Фюзеляж вертолета аэродинамически несимметричен. Это видно из кри­вых изменения коэффициентов подъемной силы фюзеляжа С 9ф и лобового сопротивления С в зависимости от углов атаки а ф (рис. 1.4). Коэффици­ент подъемной силы фюзеляжа равен нулю при угле атаки несколько больше 1 , поэтому и подъемная сила будет по­ложительной на углах атаки больше Г, а на углах атаки меньше 1 -отрицательной. Минимальное значение коэффициента лобо­вого сопротивления фюзеляжа С будет при угле атаки, равном нулю. Ввиду того что на углах атаки больше или меньше нуля ко­эффициент С ф увеличивается, выгодно со­вершать полет на углах атаки фюзеляжа, близких к нулю. С этой целью предусмот­рен угол наклона вала несущего винта впе­ред, составляющий 4,5°.

Фюзеляж без стабилизатора статически неустойчив, так как увеличение углов ата­ки фюзеляжа приводит к увеличению коэффициента продольного момента, а следовательно, и продольного момента, действующего на кабрирование и стремящегося к дальнейшему увеличению угла атаки фюзеляжа. Наличие стабилизатора на хвостовой балке фюзеля­жа обеспечивает продольную устойчивость последнему лишь на малых установочных углах от +5 до -5° и в диапазоне небольших углов атаки фюзеляжа от -15 до + 10°. На больших углах установки стабилизатора и больших углах атаки фюзеляжа, что соответствует полету на режиме авто­ротации, фюзеляж статически неустойчив. Это объясняется срывом потока со стабилизатора. В связи с наличием у вертолета хорошей управляемости и достаточных запасов управления на всех режимах полета на нем при­менен стабилизатор, не управляемый в полете с установочным углом - 6°.

Рис. 1.4. Зависимость коэффици­ента подъемной силы Суф и лобо­вогосопротивления Схф фюзеляжа от углов атаки a° фюзеляжа

В поперечном направлении фюзеляж устойчив лишь на больших отрица­тельных углах атаки -20° в диапазоне углов скольжения от -2 до + 6°. Это вызвано тем, что увеличение углов скольжения приводит к увеличению коэффициента момента крена, а следовательно, и поперечного момента, стре­мящегося и дальше увеличить угол скольжения.

В путевом отношении фюзеляж неустойчив практически на всех углах атаки при малых углах скольжения от -10 до +10°, на углах, больше указанных, характеристики устойчивости улучшаются. При углах сколь­жения 10° < b < - 10° фюзеляж нейтрален, а при скольжении больше 20° он приобретает путевую устойчивость.

Если рассматривать вертолет в целом, то хотя он и обладает достаточной динамической устойчивостью, но не вызывает больших затруднений при пилотировании даже без автопилота. Вертолет Ми-8 в общем оценен с удов­летворительными характеристиками устойчивости, а с включенными систе­мами автоматической стабилизации эти характеристики значительно улуч­шились, вертолету придана динамическая устойчивость по всем осям и по­этому пилотирование существенно облегчается.

4. КОМПОНОВКА ВЕРТОЛЕТА

Вертолет Ми-8 (рис. 1.5) состоит из следующих основных частей и систем: фюзеляжа, взлетно-посадочных устройств, силовой установки, трансмиссии, несущего и рулевого винтов, управления вертолетом, гидравлической систе­мы, авиационного и радиоэлектронного оборудования, системы отопления и вентиляции кабин, системы кондиционирования воздуха, воздушной и противообледенительной систем, устройства для внешней подвески грузов, такелажно-швартовочного и бытового оборудования. Фюзеляж вертолета включает носовую 2 и центральную 23 части, хвосто­вую 10 и концевую 12 балки. В носовой части, являющейся кабиной экипа­жа, размещены сиденья пилотов, приборные доски, электропульты, автопи­лот АП-34Б, командные рычаги управления. Остекление кабины экипажа обеспечивает хороший обзор; правый 3 и левый 24 блистеры снабжены меха­низмами аварийного сброса.

В носовой части фюзеляжа расположены ниши для установки контейне­ров с аккумуляторами, штепсельные разъемы аэродромного питания, труб­ки приемников воздушного давления, две рулежно-посадочные фары и люк с крышкой 4 для выхода к силовой установке. Носовая часть фюзеляжа от­делена от центральной части стыковочным шпангоутом № 5Н, в стенке которого имеется дверной проем. В проеме двери установлено откидное сиденье борт­механика. Спереди, на стенке шпангоута № 5Н, расположены этажерки ра­дио- и электрооборудования, сзади - контейнеры двух аккумуляторных батарей, коробка и пульт управления электролебедкой.

В центральной части фюзеляжа расположена грузовая кабина, для входа в которую слева имеется сдвижная дверь 22, снабженная механизмом ава­рийного сброса. У верхнего переднего угла проема сдвижной двери снару­жи крепится бортовая стрела. В грузовой кабине вдоль правого и левого бортов установлены откидные сиденья. На полу грузовой кабины располо­жены швартовочные узлы и электролебедка. Над грузовой кабиной разме­щены двигатели, вентилятор, главный редуктор с автоматом перекоса и не­сущим винтом, гидропанель и расходный топливный бак.

К узлам фюзеляжа снаружи крепятся амортизаторы и подкосы главных 6, 20 и передней / стоек шасси, подвесные топливные баки 7, 21. Впереди правого подвесного топливного бака расположен керосиновый обогреватель.

Грузовая кабина заканчивается задним отсеком с грузовыми створками. В верхней части заднего отсека расположен радиоотсек, в котором установ­лены панели под приборы радио- и электрооборудования. Для входа из гру­зовой кабины в радиоотсек и хвостовую балку имеется люк. Грузовые створ­ки закрывают проем в грузовой кабине, предназначенный для закатки и вы­катки колесной техники, погрузки и выгрузки крупногабаритных грузов.

В пассажирском варианте к специальным профилям, расположенным по полу центральной части фюзеляжа, крепятся 28 пассажирских кресел. По правому борту в задней части кабины расположен гардероб. Правая борто­вая панель имеет шесть прямоугольных окон, левая - пять. Задние борто­вые окна встроены в крышки аварийных люков. Грузовые створки в пасса­жирском варианте укороченные, на внутренней стороне левой створки рас­положено багажное отделение, а в правой створке размещены короба под контейнеры с аккумуляторами. В грузовых створках сделан проем под зад­нюю входную дверь, состоящую из створки и трапа.


Рис. 1.5 Компоновочная схема вертолета.

1-передняя нога шасси; 2-носовая часть фюзеляжа; 3, 24-сдвижные блистеры; 4-крышка люка выхода к двигателям; 5, 21-главные ноги шасси; 6-капот обогревателя КО-50; 7, 12-подвесные топливные баки; 8-капоты; 9-редук-торная рама; 10-центральная часть фюзеляжа; 11-крышка люка в правой грузовой створке; 12, 19-грузовые створки; 13-хвостовая балка; 14-стабилизатор; 15-концевая балка; 16-обтекатель; 17-хвостовая опора; 18-трапы; 20-щиток створки; 23-сдвижная дверь; 25-аварийный люк-окно.

К центральной части фюзеляжа пристыкована хвостовая балка, к узлам которой крепится хвостовая опора и неуправляемый стабилизатор. Внутри хвостовой балки в верхней ее части проходит хвостовой вал трансмиссии. К хвостовой балке пристыкована концевая балка, внутри которой установ­лен промежуточный редуктор и проходит концевая часть хвостового вала трансмиссии. Сверху к концевой балке крепится хвостовой редуктор, на ва­лу которого установлен рулевой винт.

Вертолет имеет неубирающееся шасси трехопорной схемы. Каждая стой­ка шасси снабжена жидкостно-газовыми амортизаторами. Колеса передней стойки самоориентирующиеся, колеса главных стоек снабжены колодочными тормозами, для управления которыми вертолет оборудован воздушной сис­темой.

Силовая установка включает два двигателя ТВ2-117А и системы, обеспечивающие их работу.

Для передачи мощности от двигателей к несущему и рулевому винтам, а также для привода ряда агрегатов используется трансмиссия, состоящая из главного, промежуточного и хвостового редукторов, хвостового вала, вала привода вентилятора и тормоза несущего винта. Каждый двигатель и главный редуктор имеют свою автономную маслосистему, выполненную по прямой одноконтурной замкнутой схеме с принудительной циркуляцией мас­ла. Для охлаждения маслорадиаторов двигателей и главного редуктора, стартер-генераторов, генераторов переменного тока, воздушного компрес­сора и гидронасосов на вертолете предусмотрена система охлаждения, со­стоящая из высоконапорного вентилятора и воздухопроводов.

Двигатели, главный редуктор, вентилятор и панель с гидроагрегатами закрыты капотом. При открытых крышках капота обеспечивается свобод­ный доступ к агрегатам силовой установки, трансмиссии и гидросистемы, при этом открытые крышки капота двигателей и главною редуктора являются рабочими площадками для выполнения технического обслуживания систем вертолета.

Вертолет оборудован средствами пассивной и активной защиты от пожара. Продольная и поперечная противопожарные перегородки делят под­капотное пространство на три отсека: левого двигателя, правого двигателя, главного редуктора. Активная противопожарная система обеспечивает пода­чу огнегасящего состава из четырех баллонов в горящий отсек.

Несущий винт вертолета состоит из втулки и пяти лопастей. Втулка имеет горизонтальные, вертикальные и осевые шарниры и снабжена гидравличес­кими демпферами и центробежными ограничителями свеса лопастей. Лопасти цельнометаллической конструкции имеют визуальную систему сигнали­зации повреждения лонжерона и электротепловое противообледенительное устройство.

Рулевой винт толкающий, изменяемого в полете шага. Он состоит из втулки карданного типа и трех цельнометаллических лопастей, снабженных электротепловым противообледенительным устройством.

Управление вертолетом сдвоенное состоит из продольно-поперечного уп­равления, путевого управления, объединенного управления «Шаг - газ» и управления тормозом несущего винта. Кроме того, имеется раздельное уп­равление мощностью двигателей и их остановом. Изменение общего шага не­сущего винта и продольно-поперечное управление вертолетом осуществляют­ся с помощью автомата перекоса.

Для обеспечения управления вертолетом в систему продольного, попе­речного, путевого управления и управления общим шагом включены по не­обратимой схеме гидроусилители, для питания которых на вертолете предус­мотрена основная и дублирующая гидросистемы.

Установленный на вертолете Ми-8 четырехканальный автопилот АП-34Б обеспечивает стабилизацию вертолета в полете по крену, курсу, тангажу и высоте.

Для поддержания в кабинах нормальных температурных условий и чис­тоты воздуха вертолет оборудован системой отопления и вентиляции, кото­рая обеспечивает подачу подогретого или холодного воздуха в кабины эки­пажа и пассажиров. При эксплуатации вертолета в районах с жарким клима­том вместо керосинового обогревателя могут быть установлены два борто­вых фреоновых кондиционера.

Противообледенительная система вертолета защищает от обледенения лопасти несущего и хвостового винтов, два передних стекла кабины экипа­жа и воздухозаборники двигателей.

Противообледенительное устройство лопастей винтов и стекол кабины экипажа - электротеплового, а воздухозаборников двигателей - воздушнотеплового действия.

Установленное на вертолете авиационное и радиоэлектронное оборудова­ние обеспечивает выполнение полетов днем и ночью в простых и сложных ме­теорологических условиях.

Вертолет представляет собой винтокрылый аппарат, в котором требуемая подъемная сила создается одним, либо несколькими винтами или пропеллерами, имеющими привод от двигателей.

Самолет летает за счет повышенного давления воздуха под своими крыльями и более низкого — под ними. Вертолет использует такой же принцип: роль крыла у него играет несущий винт с лопастями.

Вращаясь, несущий винт создает большую подъемную силу. Это вращение создает, кроме этого, и вращательный или реактивный момент, который стремится закрутить фюзеляж самого вертолета в противоположном направлении. Дабы как-то компенсировать этот реактивный момент, применяют, как правило, дополнительный рулевой винт в вертикальном положении. Если рулевой винт имеет вид вентилятора, вмонтированного в вертикально расположенное хвостовое оперение, его принято называть фенестроном.

Во всех случаях, несущий винт у вертолетов имеет автомат от перекосов, который призван обеспечивать изменение положения центра давления самого винта для управления полетом (исключение здесь составляют схемы, в которых три и более несущих винтовых механизма).

В том случае, если имеется только один-единственный приводной несущий винт, обязательным является наличие устройства, для гашения вращающего момента этого винта (как правило, это рулевой винт или же фенестрон, намного реже струйные устройства и другие). В схемах с несколькими винтами вращающий момент, зачастую, компенсируют обыкновенным противовращением имеющихся несущих винтов. Если же винт вращается благодаря реактивным двигателям, установленных непосредственно на самих лопастях винта, вращающий момент, в общем-то, почти совсем не заметен и легко может компенсироваться за счет аэродинамических рулей.

Для большей разгрузки механизма несущего винта и самого винта при больших скоростях, вертолет могут оснащать достаточно мощным и хорошо развитым крылом, которое будет придавать путевую устойчивость. Для этой же цели можно использовать и оперение.

Еще одним методом для компенсации реактивных моментов в вертолете, является установка двух несущих винтов, которые будут вращаться в противоположных друг другу направлениях и расположенных на общей оси (соосно). Тогда второй винт будет носить название аэродинамически симметричный соосный несущий винт (такой вариант, например, можно увидеть на российском вертолете Ка-50). Необходимо заметить, что вертолеты с такой схемой имеют более низкую эффективность, по сравнению со схемами в один винт, по причине интерференции винтов вертолета. Это стало причиной использования таких летательных устройств в стесненных пространственных условиях, например, в палубной авиации.