Как измерить ESR конденсатора с помощью осциллографа и генератора сигналов. ESR. Способы измерения Измерение esr электролитических конденсаторов

Этот проект был задуман как способ проверки пригодности конденсатора к работе. Я покупаю много старых радиоэлектронных устройств старше 25-60 лет и состояние электролитических конденсаторов бывает подозрительным. Мне требовался быстрый способ проверки конденсаторов.

Что такое ESR?
"ESR" означает эквивалентное последовательное сопротивление. ESR является одной из характеристик, которые определяют производительность электролитического конденсатора. Чем ниже ESR конденсатора, тем лучше, так как при высоком ESR конденсатор разогревается при прохождении тока через него, а это разрушает его. Со временем ESR конденсатора может увеличиться от 10 до 30 раз, либо конденсатор вообще перестанет пропускать ток. Типичный срок службы электролитических конденсаторов 2000-15000 часов и очень сильно зависит от температуры окружающей среды. Когда ESR увеличивается, конденсатор начинает хуже работать и в конечном итоге схема не работает.

Почему ESR метр так полезен?
Большинство ESR метров требует, чтобы конденсатор был выпаян из схемы. Когда конденсаторов в схеме много, это очень утомительно, и есть риск повредить плату. Этот тестер использует низкое напряжение (250 мВ) высокой частоты (150 кГц) для измерения конденсаторов. Измерение без выпаивания из схемы возможно из-за низкого напряжения, которого хватает конденсатору, но для других деталей мало, поэтому они не мешают измерению. Большинство ESR метров будут повреждены, если вы измерите ими заряженный конденсатор. Эта схема выдерживают до 400V заряда на конденсаторе (Это напряжение опасно для жизни. Будьте осторожны! ). Мой опыт показал, что ESR метр распознает около 95% негодных конденсаторов.

Характеристики ESR измерителя:
- измерение электролитических конденсаторов емкостью > 1мкФ
- полярность конденсатора не важна
- допускает подключение заряженных конденсаторов до 400В
- низкий уровень энергопотребления (около 25 мА), что дает около 20 часов автономной работы при использовании 4 батареек АА
- измерение ESR в диапазоне 0-75 Ом.

Описание схемы
Схема начинается с 150 кГц генератора на одном элементе 74hc14. Остальные элементы используются для увеличения напряжения идущего в фильтр низких частот. Фильтр низких частот необходим, потому что прямоугольный сигнал содержит много помех и гармоник. Сигнал с фильтра идет на 10Ом резистор, который обеспечивает низкий уровень сигнала при измерении конденсатора. Диоды D5 и D6 защищают цепь от разряда при подключении заряженного конденсатора. R18 является гасящим резистором для C5. C5 защищает цепь от постоянного тока напряжением до 400В.

Остальная часть схемы является транзисторным усилителем с коэффициентом усиления около 10.5. Это усиливает сигнал, пришедший с конденсатора, до нескольких вольт в амплитуде. Усиленное напряжение должно быть достаточно большим, чтобы преодолеть 2 диода, после чего шкала начнет реагировать. Правильное функционирование схемы можно проверить, подключая на вход резисторы разного сопротивления (1 Ом - около 90% от полной шкалы, 10 Ом - около 40% шкалы и 47 Ом - около 10% шкалы). Показания тестера могут немного меняться в зависимости от температуры. Ниже можно скачать фотографии и рисунок ПП.

Файлы проекта:
Сборочный чертеж - esrbuildit.png
ПП вид снизу - esrpcb.png
ПП вид снизу - esrxray.png
ПП и схема в формате - ESR meter.zip
/SWCadiii - esr.asc

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 ИС буфера, драйвера

CD74HC14

1 В блокнот
Q1 Биполярный транзистор

2N2222

1 В блокнот
D1-D4 Выпрямительный диод

1N4148

4 В блокнот
D5, D6 Выпрямительный диод

1N4004

2 В блокнот
С1-С3 Конденсатор 0.01 мкФ 3 В блокнот
С4 Конденсатор 0.047 мкФ 1 В блокнот
С5 Конденсатор 0.47 мкФ 400 В 1 В блокнот
С6 Конденсатор 0.1 мкФ 1 В блокнот
С7 Электролитический конденсатор 10 мкФ 1 В блокнот
R1 Резистор

1 кОм

1 В блокнот
R2-R6 Резистор

680 Ом

5 В блокнот
R7, R8 Резистор

10 Ом

2 В блокнот
R9 Резистор

100 кОм

1 В блокнот
R10 Подстроечный резистор 25 кОм 1 В блокнот
R11 Резистор

2.2 кОм

1 В блокнот
R12 Резистор

100 Ом

1 В блокнот
R17 Резистор

Не смотря на то, что большинство современных мультиметров оснащены функцией измерения , в том числе и электролитических, однако возможность замерить ESR (эквивалентное последовательное сопротивление) на самом деле является большой редкостью.

В данной конструкции генератор собран на одном логическом элементе (DD1.1) микросхемы 74HC14N (инвертирующий Шмитта) и RC-цепи R1 и С1, которая определяет частоту работы генератора. В данном случае это около 100 кГц. Сигнал с генератора усиливается оставшимися пятью элементами микросхемы DD1 до амплитуды в районе 250мВ, который потом поступает на исследуемый Cx.

Исследуемый конденсатор подключается к контактам X1 и X2 ESR измерителя. Для защиты тестера от заряда, имеющегося в конденсаторе Cx, предусмотрена линия защиты состоящая из С4, R8, VD1 и VD2 (). Измеряемый сигнал после прохождения через конденсатор Cx усиливается T1 (), далее выпрямляется четырьмя D3-D6 (), а затем отфильтровывается конденсатором С6.

К выводам X3 и X4 через R14 подключается микроамперметр со шкалой полного отклонения около 50мкA. Значение, отображаемое на индикаторе в основном пропорционально значению ESR конденсатора. Конечно, необходимо путем калибровки связать значение ESR и емкость нового конденсатора, чтобы можно было обнаружить несоответствие с неисправным конденсатором.

Калибровка ESR измерителя

Правильно собранный и проверенный на ошибки ESR-метр должен заработать при первом же включении. В качестве источника питания можно порекомендовать блок питания на . После подачи питания прибор должен сразу показать величину ESR. Для получения более точных значений можно вместо постоянного резистора R14 подключить на 25 кОм.

Настройка выполняется просто — вместо исследуемого конденсатора необходимо по очереди подключать резисторы с малым сопротивлением. Разметка шкалы должна быть примерно такой: при подключении резистора 1 Ом отклонение стрелки должно быть более 90%, при сопротивлении резистора 10 Ом отклонение в районе 40% и при 47 Ом только 10%.

К сведению, реальное сопротивление (ESR) рабочего электролитического конденсатора не должно превышать 10 Ом.


Электролитический конденсатор - необходимая в хозяйстве радиолюбителя вещь. Часто оказывается, что нету под рукой столь нужной маленькой копеечной детальки - из-за такой ерунды приходится ехать в магазин. В целях избежать такой ситуации решил обзавестись такой коробочкой.

Сама коробочка продается в этом магазине - - стоит 2.2$ Так что наш восточный сосед насыпал нам кучку конденсаторов на 3$. Очень неплохая цена для 200 конденсаторов. В конце концов содержимое можно отдать (выкинуть, разобрать в познавательных целях, бусы сплести и т.д.) - а в коробочку в 15 ячеек что-то положить.

Дошло все за 2 недели внезапно.

Фото упаковки (в пленке была)

Размеры:




Есть вешалка на гвоздь:-)

В коробке находятся 200 электролитических конденсатора таких номиналов:


От транспортировки конденсаторы в коробочке почти не перемешались. Чтобы не путаться, я подписал номиналы (почему продавец так не делает сам - не понятно)


Измерения конденсаторов проводил популярным тут тестером (версия в коробочке)

Прибор измеряет емкость, ESR, Vloss. С емкостью более менее все понятно.
Описание Vloss стырил отсюда - :

… он косвенно указывает на уровень утечки конденсатора. Как известно, реальный конденсатор имеет сопротивление диэлектрика между обкладками. Благодаря этому сопротивлению конденсатор медленно разряжается из-за, так называемого, тока утечки.

Так вот, при заряде конденсатора коротким импульсом тока напряжение на его обкладках достигает определённого уровня. Но, как только заряд конденсатора прекращается, напряжение на заряженном конденсаторе падает на очень небольшую величину. Разность между максимальным напряжением на конденсаторе и тем, что наблюдается после завершения заряда и выражают как Vloss. Чтобы было удобней, Vloss выражают в процентах.

Т.е. если он меньше 5% значит все ок.

Про ESR (ЭПС) - Equivalent series resistance(эквивалентное последовательное сопротивление) - тут можно почитать про параметр и способ измерения - .

Определяют по таблице:


Для маленьких емкостей до 5 Ом. Если сильно больше номинала таблицы - то такой кондер лучше выкинуть.

Пациент №1
0.1мкФ; 50В; 4х7 мм; 15 штук; Фирма NCK

Пациент №2
0.22 мкФ; 50 В; 15 штук; 5х11 мм; фирма Chang

ESR должен быть 5. Тут скорее всего прибор не умеет мерить нормально на маленьких емкостях.

Пациент №3
0.47 мкФ; 50 В; 15 штук; 5х11 мм; фирма Chang

ESR должен быть 5.Тут скорее всего прибор не умеет мерить нормально на маленьких емкостях.

Пациент №4
1 мкФ; 50 В; 15 штук; 5х11 мм; фирма Chang

ESR по таблице должен быть 4.5. Тут скорее всего прибор не умеет мерить нормально на маленьких емкостях

Пациент №5
2.2 мкФ; 50 В; 15 штук; 5х10 мм; фирма Chang

ESR по таблице должен быть 4.5 Тут скорее всего прибор не умеет мерить нормально на маленьких емкостях

Пациент №6
3.3 мкФ; 50 В; 15 штук; 5х10 мм; фирма Chang

ESR по таблице должен быть 4.7 Тут скорее всего прибор не умеет мерить нормально на маленьких емкостях

Пациент №7
4.7 мкФ; 50 В; 15 штук; 5х11 мм; фирма Chang

ESR по таблице должен быть 3.0 Тут скорее всего прибор не умеет мерить нормально на маленьких емкостях

Пациент №8
10 мкФ; 25 В; 15 штук; 5х11 мм; фирма Chang


ESR по таблице должен быть 5.3 Тут все ок с ESR

Пациент №9
22 мкФ; 25 В; 15 штук; 5х10 мм; фирма Chang

Что-то судя по таблице пичально тут с ESR

Пациент №10
22 мкФ; 16 В; 15 штук; 5х11 мм; фирма Chang

ESR по таблице должен быть 3.6 Тут с ESR все ок

Пациент №11
47 мкФ; 16 В; 10 штук; 5х10 мм; фирма Jackcon

По таблице ESR должен быть около 1. Сами все видите.

Пациент №12
47 мкФ; 25 В; 10 штук; 5х10 мм; фирма Chang

По таблице ES

ESR - Equivalent Series Resistance - один из параметров конденсатора, характеризующий его активные потери в цепи переменного тока. В эквиваленте его можно представить, как включенный последовательно с конденсатором резистор, сопротивление которого определяется, главным образом, диэлектрическими потерями, а так же сопротивлением обкладок, внутренних контактных соединений и выводов конденсатора. В русскоязычной аббревиатуре - Эквивалентное Последовательное Сопротивление - ЭПС.

Потери в диэлектрике, обусловленные особенностями его поляризации, составляют основную часть потерь в конденсаторе и определяются материалом, а так же толщиной слоя диэлектрика.

Поляризация - ограниченное смещение связанных зарядов диэлектрика в электрическом поле.

Рассматривать детально процессы всех видов поляризации здесь нет необходимости, но вкратце это можно пояснить следующим образом:
Частицы диэлектрика, обладающие зарядом, под воздействием переменного электрического поля вынуждены совершать непроизвольные механические колебания, обусловленные их переориентацией и смещением (поляризацией).
В слоях диэлектрика, близких к обкладкам, заряды, не покидая своих связей, активно участвуют в общем процессе перезаряда конденсатора. По сути уменьшается толщина реального диэлектрика. В результате существенно повышается ёмкость конденсатора но, по причине инертности и внутреннего трения связанных частиц, процессы сопровождаются выделением тепла и потерями энергии в токопроводящих слоях диэлектрика.
С увеличением частоты, диэлектрические потери пропорционально возрастают.

В результате угол сдвига фаз между током и напряжением составит не 90°, как в идеальном конденсаторе, а несколько меньше.
Тангенс угла δ , составляющего эту разницу с 90°, называют тангенсом угла диэлектрических потерь.
Аналогичный сдвиг происходит в цепи при последовательном включении конденсатора и резистора. В связи с этим для расчётов принято понятие последовательного эквивалентного сопротивления ESR, в котором диэлектрические потери суммируются с активным сопротивлением обкладок, соединений и выводов, представляя собой по сути резистор, подключенный последовательно с конденсатором.

Тангенс угла потерь определится соотношением R/Xc , как тригонометрическая функция отношения двух катетов треугольника сопротивлений, показанного на рисунке выше.

В электролитических конденсаторах значимой частью ESR является сопротивление жидкого электролита, который используется в качестве составляющей одной из обкладок для обеспечения максимальной площади соприкосновения с диэлектриком.
Если сопротивление электролита в конденсаторе рассмотреть как проводник с поперечным сечением, равным площади одной из обкладок и длиной проводника, приблизительно равной толщине пропитанной бумаги, можно предположить, что эта величина будет относительно малой. В реальных конденсаторах она обычно соизмерима с сотыми долями Ома при 20°C.
Но, следует учитывать, что для конденсаторов большой ёмкости, используемых в фильтрах выпрямителей ИИП на рабочей частоте порядка 100 кГц, когда его реактивное сопротивление измеряется тысячными долями Ома, эта величина может составлять основные потери, но будет значительно уменьшаться по мере прогрева.
Величина диэлектрических потерь на таких частотах в электролитических конденсаторах фильтров ИИП обычно в несколько раз больше, и лишь в самых лучших случаях может быть примерно равна и даже меньше потерь в электролите.

Сопротивление электролита существенно зависит от температуры по причине изменения степени его вязкости и подвижности ионов.

В процессе работы происходит нагрев диэлектрика и электролита переменным током, в связи с чем существенно уменьшается сопротивление электролита, тогда ESR конденсатора будет определяться, главным образом, его диэлектрическими потерями.
В случаях разогрева до температуры кипения, электролит утрачивает свои первоначальные свойства и при последующем охлаждении становится более вязким, что значительно повышает его сопротивление. Дальнейшая эксплуатация будет вызывать ещё больший разогрев и ухудшение качества электролита, что в последствии приведёт к непригодности конденсатора для дальнейшей работы в устройстве.
Обычно неисправные электролитические конденсаторы, в которых кипел электролит, определяются визуально по вздувшемуся и разгерметизированному корпусу.

Для надёжности работы электролитических конденсаторов очень важен правильный выбор его типа, номинала и максимального напряжения в зависимости от режимов.
Для фильтров преобразователей, работающих на частотах десятков или сотен килогерц, производители выпускают специальные конденсаторы с малым ESR и указывают полное сопротивление переменному току (импеданс Z) для всех номиналов в таблицах.
Тип таких конденсаторов сопровождается пометкой в технической документации - Low impedance или Low ESR.

Для анализа состояния конденсатора применяются измерители и пробники ESR, которые могут быть выполнены исходя из разных принципов измерений и требований к погрешностям. Большая часть ESR-метров и пробников основана на принципе измерения импеданса.
Подробнее о способах измерения можно ознакомиться на страничке - измерение ESR .

Замечания и предложения принимаются и приветствуются!

Наиболее слабым местом в любой радиосхеме являются электролитические конденсаторы, которые подвержены постоянному высыханию. И чем большие токи проходят через них - тем этот процесс быстрее. Обычным омметром определить плохой конденсатор не получится, поэтому необходим спецприбор - esr измеритель.

Схема электрическая esr измерителя конденсаторов

Печатные платы - рисунок

В типичной схеме, может быть 10 или даже 100 конденсаторов. Выпаивать каждый для тестирования очень утомительно и существует большой риск повреждения платы. Этот тестер использует низкое напряжение (250 мВ) высокой частоты (150 кГц), и он способен мерять ESR конденсаторов прямо в схеме. Напряжение выбрано достаточно низкими, чтобы другие окружающие радиоэлементы схемы не влияли на результаты замеров. А если вам случайно доведется испытать заряженный конденсатор - не беда. Этот измеритель выдерживает до 400В заряда на конденсаторе. Опыт показал, что ЭПС метр выявляет около 95% конденсаторов с потенциальными проблемами.


Особенности работы прибора

  • Тест электролитических конденсаторов > 1 мкФ.
  • Полярность не важна для тестирования.
  • Переносит заряд конденсаторов до 400В.
  • Низкий ток потребления от батареи - около 25 мА.
  • Легко читать данные аналогового измерителя.
  • Меряет ЭПС в диапазоне от 0-75 Ом по расширенной шкале с помощью омметра.
Будьте осторожны, если вы тестируете высоковольтные конденсаторы. Имейте в виду, что высоковольтные конденсаторы могут нести сильный заряд в течение нескольких дней, в зависимости от схемы.

Как использовать ESR метр

Включаете прибор. Убедитесь, что проверяемая схема находится не под напряжением. Разрядите конденсатор перед тестированием - ЭПС метр не делает этого автоматически. Замкните выводы конденсатора и удерживайте их так в течение нескольких секунд. С помощью вольтметра убедитесь, что конденсатор полностью разряжен. Вольтметр должен показывать нулевое значение. Прикоснитесь щупами ESR метра к конденсатору. Определите сопростивление ESR. Является ли значение ESR приемлемым узнаём путем сравнения измеренного ESR с эталонными данными. Посмотреть эту таблицу