Уровнемеры на тиристорах. Управление тиристором. По обратной проводимости тиристоры делятся

В статье рассказывается о том, как работает тиристорный регулятор мощности, схема которого будет представлена ниже

В повседневной жизни очень часто возникает необходимость регулирования мощности бытовых приборов, например электроплиты, паяльника, кипятильников и ТЭНов, на транспорте - оборотов двигателя и т.д. На помощь приходит простейшая радиолюбительская конструкция - регулятор мощности на тиристоре. Собрать такое устройство не составит труда, оно может стать тем самым первым самодельным прибором, который будет выполнять функцию регулировки температуры жала паяльника начинающего радиолюбителя. Стоит отметить, что готовые паяльные станции с контролем температуры и прочими приятными функциями стоят на порядок дороже простого паяльника. Минимальный набор деталей позволяет собрать простой тиристорный регулятор мощности навесным монтажом.

К сведению, навесной монтаж — это способ сборки радиоэлектронных компонентов без применения печатной платы, а при хорошем навыке он позволяет быстро собрать электронные устройства средней сложности.

Вы также можете заказать тиристорного регулятора, а для тех, кто хочет разобраться во всём самостоятельно, ниже будет представлена схема и объяснён принцип работы.

Между прочим, это однофазный тиристорный регулятор мощности. Такой прибор может быть использован для управления мощностью или количеством оборотов. Однако для начала следует разобраться в ведь это позволит нам понять, на какую нагрузку лучше использовать такой регулятор.

Как работает тиристор?

Тиристор - это управляемый полупроводниковый прибор, способный проводить ток в одном направлении. Слово «управляемый» употреблено неспроста, поскольку с его помощью, в отличие от диода, который тоже проводит ток только к одному полюсу, можно выбирать момент, когда тиристор начнет проводить ток. Тиристор имеет три вывода:

  • Анод.
  • Катод.
  • Управляющий электрод.

Для того чтобы ток начал течь через тиристор, необходимо выполнить следующие условия: деталь должна стоять в цепи, находящейся под напряжением, на управляющий электрод должен быть подан кратковременный импульс. В отличие от транзистора, управление тиристором не требует удержания управляющего сигнала. На этом нюансы не заканчиваются: тиристор можно закрыть, лишь прервав ток в цепи, или сформировав обратное напряжение анод - катод. Это значит, что использование тиристора в цепях постоянного тока весьма специфично и часто неблагоразумно, а вот цепях переменного, например в таком приборе как тиристорный регулятор мощности, схема построена таким образом, что обеспечено условие для закрытия. Каждая из полуволн будет закрывать соответствующий тиристор.

Вам, скорее всего, не всё понятно? Не стоит отчаиваться - ниже будет подробно описан процесс работы готового устройства.

Область применения тиристорных регуляторов

В каких цепях эффективно использовать тиристорный регулятор мощности? Схема позволяет отлично регулировать мощность нагревательных приборов, то есть воздействовать на активную нагрузку. При работе с высокоиндуктивной нагрузкой тиристоры могут просто не закрыться, что может привести к выходу регулятора из строя.

Можно ли двигателя?

Я думаю, многие из читателей видели или пользовались дрелями, углошлифовальными машинами, которые в народе именуют "болгарками", и прочим электроинструментом. Вы могли заметить, что количество оборотов зависит от глубины нажатия на кнопку-курок прибора. Вот в этот элемент как раз и встроен такой тиристорный регулятор мощности (схема которого приведена ниже), с помощью которого осуществляется изменение количества оборотов.

Обратите внимание! Тиристорный регулятор не может изменять обороты асинхронных двигателей. Таким образом, напряжение регулируется на коллекторных двигателях, оборудованных щёточным узлом.

Схема одном и двух тиристорах

Типовая схема для того, чтобы собрать тиристорный регулятор мощности своими руками изображена на рисунке ниже.

Выходное напряжение у данной схемы от 15 до 215 вольт, в случае применения указанных тиристоров, установленных на теплоотводах, мощность составляет порядка 1 кВт. Кстати выключатель с регулятором яркости света сделан по подобной схеме.

Если у вас нет необходимости полной регулировки напряжения и достаточно получать на выходе от 110 до 220 вольт, воспользуйтесь этой схемой, которая показывает однополупериодный регулятор мощности на тиристоре.

Как это работает?

Описанная ниже информация справедлива для большинства схем. Буквенные обозначения будут браться в соответствии первой схемы тиристорного регулятора

Тиристорный регулятор мощности, принцип работы которого основан на фазовом управлении величиной напряжения, изменяет и мощность. Данный принцип заключается в том, что в нормальных условиях на нагрузку действует переменное напряжение бытовой сети, изменяющееся по синусоидальному закону. Выше, при описании принципа работы тиристора, было сказано, что каждый тиристор работает в одном направлении, то есть управляет своей полуволной от синусоиды. Что это значит?

Если с помощью тиристора периодически подключать нагрузку в строго определенный момент, величина действующего напряжения будет ниже, поскольку часть напряжения (действующая величина, которая «попадёт» на нагрузку) будет меньше, чем сетевое. Данное явление проиллюстрировано на графике.

Заштрихованная область - это и есть область напряжения, которое оказалось под нагрузкой. Буквой «а» на горизонтальной оси обозначен момент открытия тиристора. Когда положительная полуволна закончится и начнется период с отрицательной полуволной, один из тиристоров закрывается, и в тот же момент открывается второй тиристор.

Разберемся, как работает конкретно наш тиристорный регулятор мощности

Схема первая

Оговорим заранее, что вместо слов "положительная" и "отрицательная" будут использованы «первая» и «вторая» (полуволна).

Итак, когда на нашу схему начинает действовать первая полуволна, начинают заряжаться ёмкости C1 и C2. Скорость их заряда ограничена потенциометром R5. данный элемент является переменным, и с его помощью задаётся выходное напряжение. Когда на конденсаторе C1 появляется необходимое для открытия динистора VS3 напряжение, динистор открывается, через него поступает ток, с помощью которого будет открыт тиристор VS1. Момент пробоя динистора и есть точка «а» на графике, представленном в предыдущем разделе статьи. Когда значение напряжения переходит через ноль и схема оказывается под второй полуволной, тиристор VS1 закрывается, и процесс повторяется заново, только для второго динистора, тиристора и конденсатора. Резисторы R3 и R3 служат для управления, а R1 и R2 - для термостабилизации схемы.

Принцип работы второй схемы аналогичен, но в ней идёт управление только одной из полуволн переменного напряжения. Теперь, зная принцип работы и схему, вы можете собрать или починить тиристорный регулятор мощности своими руками.

Применение регулятора в быту и техника безопасности

Нельзя не сказать о том, что данная схема не обеспечивает гальванической развязки от сети, поэтому существует опасность поражения электрическим током. Это значит, что не стоит касаться руками элементов регулятора. Необходимо использовать изолированный корпус. Следует проектировать конструкцию вашего прибора так, чтобы по возможности вы могли спрятать её в регулируемом устройстве, найти свободное место в корпусе. Если регулируемый прибор располагается стационарно, то вообще имеет смысл подключить его через выключатель с регулятором яркости света. Такое решение частично обезопасит от поражения током, избавит от необходимости поиска подходящего корпуса, имеет привлекательный внешний вид и изготовлено промышленным методом.

— устройство, обладающее свойствами полупроводника, в основе конструкции которого лежит монокристаллический полупроводник, имеющий три или больше p-n-переходов.

Его работа подразумевает наличие двух стабильных фаз:

  • «закрытая» (уровень проводимости низкий);
  • «открытая» (уровень проводимости высоки).

Тиристоры — устройства, выполняющие функции силовых электронных ключей. Другое их наименование — однооперационные тиристоры. Данный прибор позволяет осуществлять регуляцию воздействия мощных нагрузок посредством незначительных импульсов.

Согласно вольт-амперной характеристике тиристора, увеличение силы тока в нём будет провоцировать снижение напряжения, то есть появится отрицательное дифференциальное сопротивление.

Кроме того, эти полупроводниковые устройства могут объединять цепи с напряжением до 5000 Вольт и силой тока до 5000 Ампер (при частоте не более 1000 Гц).

Тиристоры с двумя и тремя выводами пригодны для работы как с постоянным, так и с переменным током. Наиболее часто принцип их действия сравнивается с работой ректификационного диода и считается, что они являются полноценным аналогом выпрямителя, в некотором смысле даже более эффективным.

Разновидности тиристоров отличаются между собой:

  • Способом управления.
  • Проводимостью (односторонняя или двусторонняя).

Общие принципы управление

В структуре тиристора имеется 4 полупроводниковых слоя в последовательном соединении (p-n-p-n). Контакт, подведённый к наружному p-слою — анод, к наружному n-слою — катод. Как результат, при стандартной сборке в тиристоре максимально может быть два управляющих электрода, которые крепятся к внутренним слоям. Соответственно подключённому слою проводники, по типу управления устройства делятся на катодные и анодные. Чаще используется первая разновидность.

Ток в тиристорах течёт в сторону катода (от анода), поэтому соединение с источником тока осуществляет между анодом и плюсовым зажимом, а также между катодом и минусовым зажимом.

Тиристоры с управляющим электродом могут быть:

  • Запираемыми;
  • Незапираемыми.

Показательным свойством незапираемых приборов является отсутствие у них реакции на сигнал с управляющего электрода. Единственный способ закрыть их — снизить уровень протекающего сквозь них тока так, чтобы он уступал силе тока удержания.

Управляя тиристором следует учитывать некоторые моменты. Устройство данного типа сменяет фазы работы с «выключен» на «включён» и обратно скачкообразно и только при условии внешнего воздействия: при помощи тока (манипуляции с напряжением) или фотонов (в случаях с фототиристором).

Чтобы разобраться в данном моменте необходимо помнить, что у тиристора преимущественно имеется 3 вывода (тринистор): анод, катод и управляющий электрод.

Уэ (управляющий электрод) как раз таки и отвечает за то, чтобы включать и выключать тиристор. Открытие тиристора происходит при условии, что приложенное напряжение между А (анодом) и К (катодом) становится равным или превосходит объём напряжения работы тринистора. Правда, во втором случае потребуется воздействие импульса положительной полярности между Уэ и К.

При постоянной подаче питающего напряжения тиристор может быть открыт бесконечно долго.

Чтобы перевести его в закрытое состояние, можно:

  • Снизить уровень напряжения между А и К до нуля;
  • Понизить значение А-тока таким образом, чтобы показатели силы тока удержания оказались больше;
  • Если работа цепи построена на действии переменного тока, выключение прибора произойдёт без постороннего вмешательства, когда уровень тока сам снизится до нулевого показания;
  • Подать запирающее напряжение на Уэ (актуально только в отношении запираемых разновидностей полупроводниковых устройств).

Состояние закрытости тоже длится бесконечно долго, пока не возникнет запускающий импульс.

Конкретные способы управления

  • Амплитудный .

Представляет собой подачу положительного напряжения изменяющейся величины на Уэ. Открытие тиристора происходит, когда величины напряжения довольно, чтобы пробиться через управляющий переход тока спрямления (Iспр.). При помощи изменения величины напряжения на Уэ, появляется возможность изменения времени открытия тиристора.

Главный недочёт этого метода — сильное влияние температурного фактора. Кроме того, для каждой разновидности тиристора потребуется резистор другого вида. Этот момент не добавляет удобства в эксплуатации. Помимо этого время открытия тиристора возможно корректировать лишь пока длится первая 1/2 положительного полупериода сети.

  • Фазовый.

Заключается в смене фазы Uупр (в соотношении с напряжением на аноде). При этом применяется фазовращательный мост. Главный минус — малая крутизна Uупр, поэтому стабилизировать момент открытия тиристора можно лишь ненадолго.

  • Фазово-импульсный .

Рассчитан на преодоление недостатков фазового метода. С этой целью на Уэ подаётся импульс напряжения с крутым фронтом. Данный подход в настоящее время наиболее распространён.

Тиристоры и безопасность

Из-за импульсности своего действия и наличия обратного восстановительного тока тиристоры очень сильно повышает риск перенапряжения в работе прибора. Помимо этого опасность перенапряжения в зоне полупроводника высока, если в других частях цепи напряжения нет вовсе.

Поэтому во избежание негативных последствий принято использовать схемы ЦФТП. Они препятствуют появлению и удержанию критический значений напряжения.

Двухтранзисторная модель тиристора

Из двух транзисторов вполне можно собрать динистор (тиристор с двумя выводами) или тринистор (тиристор с тремя выводами). Для этого один из них должен иметь p-n-p-проводимость, другой — n-p-n-проводимость. Выполнены транзисторы могут быть как из кремния, так и из германия.

Соединение между ними осуществляется по двум каналам:

  • Анод от 2-го транзистора + Управляющий электрод от 1-го транзистора;
  • Катод от 1-го транзистора + Управляющий электрод от 2-го транзистора.

Если обойтись без использования управляющих электродов, то на выходе получится динистор.

Совместимость выбранных транзисторов определяется по одинаковому объёму мощности. При этом показания тока и напряжения должны быть обязательно больше требуемых для нормального функционирования прибора. Данные по напряжению пробоя и току удержания зависят от конкретных качеств использованных транзисторов.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Для включения и отключения нагрузки (ламп накаливания, обмоток реле, электродвигателей и т.п.) зачастую используют тиристоры. Особенность этого вида полупроводниковых приборов и основное их отличие от транзисторов заключается в том, что они обладают двумя устойчивыми состояниями, без каких-либо промежуточных.

Это состояние «включено», когда сопротивление полупроводникового прибора минимально, и состояние «выключено», когда сопротивление тиристора максимально. В идеале эти сопротивления приближаются к нулю или бесконечности.

Для включения тиристора на его управляющий электрод достаточно хотя бы кратковременно подать управляющее напряжение. Отключить тиристор (запереть) можно кратковременным выключением питания тиристора, сменой полярности питающего напряжения либо уменьшением тока в нагрузке ниже тока удержания тиристора.

Обычно включают и отключают тиристорные коммутаторы двумя кнопками. Значительно меньшее распространение получили однокнопочные схемы управления тиристорами.

Здесь подробно рассмотрены методы однокнопочного управления тиристорными коммутаторами. Принцип работы тиристорных однокнопочных управляющих устройств основан на динамических зарядно-разрядных процессах в цепи управления тиристора .

Схема однокнопочного управления тиристором

На рисунке 1 показана одна из простейших схем однокнопочного управления тиристорным коммутатором. В схеме (здесь и далее) используют кнопки без фиксации положения. В исходном состоянии нормально замкнутые контакты кнопки шунтируют цепь управления тиристором.

Сопротивление тиристора максимально, ток через нагрузку не протекает. Диаграммы основных процессов, протекающих в схеме на рис. 1, рассмотрены на рис. 2.

Для включения тиристора (ON) нажимают на кнопку SB1. При этом нагрузка оказывается подключенной к источнику питания через контакты кнопки SB1, а конденсатор С1 заряжается через резистор R1 от источника питания.

Скорость заряда конденсатора определяется постоянной времени цепи R1C1 (см. диаграмму). После того как кнопку отпустят, конденсатор С1 разряжается на управляющий электрод тиристора. Если напряжение на нем равно или превышает напряжение включения тиристора, тиристор отпирается.

Рис. 1. Принципиальная схема управления тиристором с помощью одной кнопки.

Рис. 2. Диаграммы основных процессов, протекающих в схеме с тиристором.

Отключить нагрузку (OFF) можно кратковременным нажатием на кнопку SB1. При этом конденсатор С1 не успевает зарядиться. Поскольку контакты кнопки шунтируют электроды тиристора (анод — катод), это равноценно отключению источника питания тиристора. В результате нагрузка будет отключена.

Следовательно, для включения нагрузки необходимо с большей продолжительностью нажать на управляющую кнопку, для отключения — еще раз кратковременно нажать ту же кнопку.

Простые силовые ключи на тиристорах

На рис. 3 и 4 показаны варианты схемной идеи, представленной на рис. 1. На рис. 3 использована цепочка последовательно соединенных диодов VD1 и VD2 для ограничения максимального напряжения заряда конденсатора.

Рис. 3. Вариант схемы управления тиристором одной кнопкой.

Это позволило заметно снизить рабочее напряжение (до 1,5...3 В) и емкость конденсатора С1. В следующей схеме (рис. 4) резистор R1 включен последовательно с нагрузкой, что позволяет создать двухполюсный коммутатор нагрузки. Сопротивление нагрузки должно быть намного ниже, чем сопротивление R1.

Рис. 4. Схема электронного ключа на тиристоре с последовательным подключением нагрузки.

Тиристорный коммутатор с двумя кнопками

Тиристорное устройство управления нагрузкой (рис. 5) может быть использовано для включения и выключения нагрузки любой из нескольких последовательно включенных кнопок, работающих на разрыв цепи. Принцип действия тиристорного коммутатора заключается в следующем.

При включении устройства напряжение, подаваемое на управляющий электрод тиристора, недостаточно для его включения. Тиристор, и, соответственно, нагрузка отключены. При нажатии на любую из кнопок SB1 — SBn (и удержании ее нажатой) конденсатор С1 заряжается через резистор R1 от источника питания. Цепь управления тиристора и сам тиристор при этом отключены.

Рис. 5. Схема простого тиристорного коммутатора нагрузки с двумя кнопками.

После отпускания кнопки и восстановления цепи питания тиристора накопленная конденсатором С1 энергия оказывается приложенной к управляющему электроду тиристора. В результате разряда конденсатора через управляющий электрод тиристор включается, подсоединяя тем самым нагрузку к цепи питания.

Для отключения тиристора (и нагрузки) кратковременно нажимают на любую из кнопок SB1 — SBn. При этом конденсатор С1 не успевает зарядиться. В то же время цепь питания тиристора размыкается, тиристор запирается.

Величина резистора R2 зависит от напряжения питания устройства: при напряжении 15 В его сопротивление — 10 кОм при 9 В — 3,3 кОм при 5 6-1,2 кОм.

Схема с эквивалентом тиристора на транзисторах

При использовании вместо тиристора его транзисторного аналога (рис. 6) величина этого резистора меняется, соответственно, от 240 кОм (15 В) до 16 кОм (9 В) и до 4,7 кОм (5 В).

Рис. 6. Схема электронного коммутатора нагрузки с транзисторным эквивалентом тиристора.

Аналог многокнопочного переключателя на тиристорах

Тиристорное устройство, позволяющее создать аналог многокнопочного переключателя с зависимой фиксацией положения и использующее для управления кнопочные элементы, работающие без фиксации, показано на рис. 7. В схеме может быть использовано несколько тиристоров, однако, для упрощения схемы, на рисунке показано лишь два канала. Другие каналы коммутации могут быть подключены аналогично предыдущим.

Рис. 7. Принципиальная схема аналога многокнопочного переключателя с использованием тиристоров.

В исходном состоянии тиристоры заперты. При нажатии на кнопку управления, например, кнопку SB1, конденсатор С1 относительно большой емкости оказывается подключенным к источнику питания через диоды VD1 — VDm и сопротивления нагрузки всех каналов.

В результате заряда конденсатора возникает импульс тока, приводящий к кратковременному замыканию анодов всех тиристоров через соответствующие диоды VD1 — VDm на общую шину.

Любой из тиристоров, если он был включен, отключается. В то же время конденсатор накапливает энергию. После отпускания кнопки конденсатор разряжается на управляющий электрод тиристора, отпирая его.

Для включения любого другого канала нажимают соответствующую кнопку. Происходит отключение (сброс) ранее задействованной нагрузки и включение новой нагрузки. В схеме предусмотрена кнопка SB0 общего отключения всех нагрузок.

Многокнопочный переключатель с транзисторным аналогом тиристоров

Вариант схемы, выполненный на транзисторных аналогах тиристоров и диодно-емкостных зарядных цепочках с использованием малогабаритных конденсаторов, показан на рис. 8, 9.

Рис. 8. Схема эквивалентной замены тиристора транзисторами.

В схеме предусмотрена светодиодная индикация включенного канала. В этой связи максимальный ток нагрузки каждого из каналов ограничен значением 20 мА.

Рис. 9. Схема многокнопочного переключателя с транзисторным аналогом тиристоров.

Устройства, аналогичные представленным на рис. 7 - 9, а также на рис. 10 - 12, можно использовать для систем выбора программ радио- и телеприемников.

Недостатком схемных решений (рис. 7 - 9) является то, что в момент нажатия на любую из кнопок все нагрузки оказываются хотя бы на мгновение подключенными к источнику питания.

Схемы многопозиционных переключателей

На рис. 10 и 11 показан тиристорный коммутатор разрывного типа с неограниченным количеством последовательно включенных элементов.

При нажатии на одну из кнопок управления цепь питания аналогов тиристоров размыкается по постоянному току. Конденсатор С1 оказывается включенным последовательно с аналогом тиристора.

Рис. 10. Схема базового элемента для самодельного многопозиционного коммутатора нагрузки.

Рис. 11. Принципиальная схема самодельного многопозиционного коммутатора нагрузки.

Одновременно управляющее напряжение (нулевого уровня) через задействованную кнопку и резистор R2 (рис. 10) подается на управляющий электрод аналога тиристора.

Поскольку в первые мгновения при нажатии кнопки последовательно с аналогом тиристора оказывается включенным полностью разряженный конденсатор, такое включение равносильно короткому замыканию в цепи питания соответствующего тиристора. Следовательно, тиристор отпирается, включая тем самым соответствующую нагрузку.

При нажатии на любую другую кнопку ранее задействованный канал отключается, и включается другой канал. При длительном (порядка 2 сек) нажатии на любую из кнопок конденсатор С1 заряжается, что равнозначно размыканию цепи и приводит к запиранию всех тиристоров.

Схема усовершенствованного электронного переключателя

Рис. 12. Принципиальная схема тиристорного коммутатора для множества нагрузок.

В ряду тиристорных коммутаторов наиболее совершенной представляется схема, показанная на рис. 12. При нажатии кнопки управления возникает бросок тока, эквивалентный короткому замыканию.

Происходит отключение ранее задействованных тиристоров и включение тиристора, соответствующего нажатой кнопке. В схеме предусмотрена светодиодная индикация задействованного канала, а также кнопка общего сброса.

Вместо конденсаторов большой емкости могут быть использованы диодно-конденсаторные цепочки (рис. 12). Принцип действия схемы сохраняется. В качестве нагрузки можно использовать низковольтные реле, например, РМК 11105 сопротивлением 350 Ом на рабочее напряжение 5 В.

Резистор R1 ограничивает ток короткого замыкания и ток максимального потребления величиной 10... 12 мА. Количество каналов коммутации не ограничено.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

♦ Известно, что электрический ток в бытовой и промышленной сети изменяется по синусоидальному закону. Форма переменного электрического тока частотой 50 герц , представлена на рис 1 а) .

За один период, цикл, напряжение меняет свое значение: 0 → (+Umax) → 0 → (-Umax) → 0 .
Если представить себе простейший генератор переменного тока (рис 1 б) с одной парой полюсов, где получение синусоидального переменного тока определяет поворот рамки ротора за один оборот, то каждое положение ротора в определенное время периода соответствует определенной величине выходного напряжения.

Или, каждому значению величины синусоидального напряжения за период, соответствует определенный угол α поворота рамки. Фазовый угол α , это угол, определяющий значение периодически изменяющейся величины в данный момент времени.

В момент фазового угла:

  • α = 0° напряжения U = 0 ;
  • α = 90° напряжение U = +Umax ;
  • α=180° напряжение U = 0 ;
  • α = 270° напряжение U = — Umax ;
  • α = 360° напряжение U = 0.

♦ Регулировка напряжения с помощью тиристора в цепях переменного тока как раз и использует эти особенности синусоидального переменного тока.
Как упоминалось ранее в статье « »: тиристор, это полупроводниковый прибор, работающий по закону управляемого электрического вентиля. Он имеет два устойчивых состояния. В определенных условиях может иметь проводящее состояние (открыт) и непроводящее состояние (закрыт) .
♦ Тиристор имеет катод, анод и управляющий электрод. С помощью управляющего электрода можно изменять электрическое состояние тиристора, то есть изменять электрические параметры вентиля.
Тиристор может пропускать электрический ток только в одном направлении - от анода к катоду (симистор пропускает ток в обоих направлениях).
Поэтому, для работы тиристора, переменный ток необходимо преобразовать (выпрямить с помощью диодного мостика) в пульсирующее напряжение положительной полярности с переходом напряжения через ноль, как на Рис 2 .

♦ Способ управления тиристором сводится к тому, чтобы в момент времени t (во время действия полупериода ) через переход Уэ – К , прошел ток включения Iвкл тиристора.


С этого момента через тиристор идет основной ток катод — анод, до следующего перехода полупериода через ноль, когда тиристор закроется.
Ток включения Iвкл тиристора можно получить разными способами.
1. За счет тока протекающего через: +U – R1 – R2 – Уэ – K – -U (на схеме рис 3) .
2. От отдельного узла формирования управляющих импульсов и подаче их между управляющим электродом и катодом.

♦ В первом случае ток управляющего электрода протекает через переход Уэ – К, постепенно увеличивается (нарастая вместе с напряжением ), пока не достигнет величины Iвкл . Тиристор откроется.

фазовым методом .

♦ Во втором случае сформированный в специальном устройстве, короткий импульс в нужный момент времени подается на переход Уэ – К , от которого тиристор открывается.

Такой способ управления тиристором называется импульсно – фазовым методом .
В обоих случаях ток, управляющий включением тиристора, должен быть синхронизирован с началом перехода сетевого напряжения Uс через ноль.
Действие управляющего электрода сводится к управлению моментом включения тиристора.

Фазовый метод управления тиристором.

♦ Попробуем на простом примере тиристорного регулятора освещения (схема на рис.3 ) разобрать особенности работы тиристора в цепи переменного тока.

После выпрямительного мостика напряжение представляет собой пульсирующее напряжение, изменяющееся в виде:
0→ (+Umax) → 0 → (+Umax) → 0, как на рис.2

♦ Начало управления тиристором сводится к следующему.
При возрастании напряжения сети , от момента перехода напряжения через ноль, в цепи управляющего электрода появляется ток управления Iуп по цепи:
+U – R1 – R2 – Уэ – К – -U.
С ростом напряжения растет и ток управления Iуп (управляющий электрод — катод).

При достижении тока управляющего электрода величины Iвкл , тиристор включается (открывается) и замыкает точки +U и –U на схеме.

Падение напряжения на открытом тиристоре (анод — катод) составляет 1,5 – 2,0 вольта. Ток управляющего электрода упадет почти до нуля, а тиристор останется в проводящем состоянии до момента, когда напряжение сети не упадет до нуля.
С действием нового полупериода напряжения сети, все повторится сначала.

♦ В цепи протекает только ток нагрузки, то есть ток через лампочку Л1 по цепи:
Uс – предохранитель – диодный мост – анод — катод тиристора – диодный мост – лампочка Л1 — Uс.
Лампочка будет загораться с каждым полупериодом сетевого напряжения и тухнуть при переходе напряжения через ноль.

Проведем небольшие вычисления для примера рис.3 . Используем данные элементов как на схеме.
По справочнику для тиристора КУ202Н ток включения Iвкл = 100 мА . В реальности же он намного меньше и составляет 10 – 20 мА, в зависимости от экземпляра.
Возьмем для примера Iвкл = 10 мА .
Управление моментом включения (регулировка яркости) происходит путем изменения величины переменного сопротивления резистора R1 . Для разных значений резистора R1 , будут разные напряжения пробоя тиристора. При этом момент включения тиристора будет меняться в пределах:

1. R1 = 0, R2 = 2,0 Ком. Uвкл = Iвкл х (R1 + R2) = 10 х (0 + 2 = 20 вольт.
2. R1 = 14,0 Ком, R2 = 2,0 Ком. Uвкл = Iвкл х (R1 + R2) = 10 х (13 + 2) = 150 вольт.
3. R1 = 19,0 Ком, R2 = 2,0 Ком. Uвкл = Iвкл х (R1 + R2) = 10 х (18 + 2) = 200 вольт.
4. R1 = 29,0 Ком, R2 = 2,0 Ком. Uвкл = Iвкл х (R1 + R2) = 10 х (28 + 2) = 300 вольт.
5. R1 = 30,0 Ком, R2 = 2,0 Ком. Uвкл = Iвкл х (R1 + R2) = 10 х (308 + 2) = 310 вольт.

Фазовый угол α изменяется в пределах от а = 10, до а = 90 градусов.
Примерный результат этих вычислений приведен на рис. 4.

♦ Заштрихованная часть синусоиды соответствует выделяемой мощности на нагрузке.
Регулировка мощности фазовым методом, возможна только в узком диапазоне угла управления от a = 10°, до а = 90° .
То есть, в пределах от 90% до 50% мощности выделяемой на нагрузке.

Начало регулирования от фазового угла а = 10 градусов объясняется тем, что в момент времени t=0 – t=1 , ток в цепи управляющего электрода еще не достиг значения Iвкл (Uс не достигло величины 20 вольт).

Все эти условия выполнимы в случае, если в схеме нет конденсатора С .
Если поставить конденсатор С (в схеме рис 2), диапазон регулирования напряжения (фазового угла) сместится вправо как на рис.5 .

Это объясняется тем, что в первое время (t=0 – t=1 ), весь ток идет на зарядку конденсатора С , напряжение между Уэ и К тиристора равно нулю и он не может включится.

Как только конденсатор зарядится, ток пойдет через управляющий электрод – катод, тиристор включится.

Угол регулирования зависит от емкости конденсатора и сдвигается примерно от а = 30 до а = 120 градусов (при емкости конденсатора 50 мкФ ).
Мощность нагрузки будет изменяться приблизительно от 80% до 30%.

Разумеется, все приведенные расчеты весьма приблизительны, но общие рассуждения верны.

Все выше приведенные эпюры напряжений, в разные временные значения, хорошо просматривались на экране осциллографа.

У кого есть осциллограф, можно посмотреть самому