Втулка несущего винта предназначена для передачи вращения лопастям от главного редуктора, а также для восприятия сил и моментов, возникающих на несущем винте, и передачи их на фюзеляж. Приложение. Особенности конструктивной компоновки узлов и шарниров вту

1) Игольчатые подшипники М и Н (рис._4.11.)

Рис. 4.11. Схема расположения основных узлов и шарниров втулки несущего винта:
1- корпус втулки несущего винта; 2- горизонтальный шарнир; 3- узел крепления тяги автомата перекоса; 4- скоба; 5- рычаг поворота лопасти; 6- вертикальный шарнир; 7- осевой шарнир; 8- лопасть; Н,М- игольчатые подшипники горизонтального шарнира
горизонтального шарнира расположены симметрично относительно перпендикуляра О1 O2, опущенного из центра О2 вертикального шарнира на ось горизонтального шарнира.
Середины проушин корпуса втулки смещены от оси вращения на расстояние а = 45 мм. При таком расположении проушин горизонтальный шарнир оказывается повернутым относительно радиального направления на угол x. Угол x, равный 5°4ў19ўў, выбран с таким расчетом, чтобы на основных режимах полета равнодействующая N аэродинамических и центробежных сил лопасти была направлена примерно по линии О1 O2.. Это обеспечивает более равномерное распределение нагрузки между игольчатыми подшипниками горизонтального шарнира и существенно повышает их долговечность; одновременно уменьшается осевая сила, воспринимаемая закладным кольцом 51 и гайкой 66 горизонтального шарнира (см._рис._4.1.).

Рис. 4.1. . Втулка несущего винта:
1, 10, 19, 31, 39, 58, 62, 66, 81- гайки; 2- верхний конус; 3- компенсационный бачок гидродемпферов; 4, 17, 25, 40- пробки, 5,50 - корпус втулки; 6- скоба; 7, 8, 11, 12, 13, 18, 20, 22, 23, 28, 33, 34, 41, 51, 61, 64, 68, 69, 71, 72, 73- кольца; 9- цапфа осевого шарнира; 14, 65- шпонки; 15, 44, 54, 56, 67- пальцы; 16, 76- крышки; 21, 38, 63- манжеты; 24, 30, 59, 70, 74, 77, 80- подшипники; 26- распорная втулка; 27- роликовый подшипник; 29- корпус осевого шарнира; 32- стопорная пластина; 35, 41- пружины; 36- шайба; 37- заглушка; 43, 55, 82- пресс-масленки; 45- собачка центробежного ограничителя свеса лопасти; 46- нижний упор; 47- нижний конус; 48, 49- пластины контровочные 52- серьга; 57- гидравлический демпфер; 60- кронштейн; 75- валик рычага поворота лопасти; 78, 79- распорные втулки; 83- рычаг поворота лопасти; 84- болт; 85 - втулка

2) Узел 3, соединяющий рычаг поворота лопасти 5 с автоматом перекоса расположен на удалении от оси горизонтального шарнира. Следовательно, при вращении лопасти относительно горизонтального шарнира она одновременно будет вращаться относительно осевого. Другими словами, если лопасть совершает маховые движения, одновременно изменяется ее угол установки. Угол установки при этом изменяется таким образом, чтобы аэродинамические силы снижали бы изменение угла взмаха. Например, если происходит увеличение угла взмаха b (лопасть "вымахивает" вверх), угол установки лопасти j снижается, подъемная сила лопасти снижается, уменьшая величину угла взмаха. Следовательно, можно сказать, что несущий винт вертолета Ми-8 имеет компенсатор взмаха.
Принцип работы компенсатора взмаха показан на рис._4.12.

Рис. 4.12. Схема работы компенсатора взмаха:
1- ось вращения несущего винта; 2- ось горизонтального шарнира; 3- тяга к автомату перекоса; 4- ось поворота лопасти

Количественно компенсация взмаха оценивается коэффициентом компенсатора взмаха:

У существующих вертолетов коэффициент компенсатора взмаха составляет 0,4…0,6. Компенсация взмаха позволяет снизить углы атаки профиля лопасти в азимуте 2700 и,следовательно,. увеличить скорость полета вертолета, предотвратить флаттер лопастей.

Общие сведения.

Рулевой винт предназначен для создания силы тяги, момент которой относительно центра масс вертолета уравновешивает реактивный момент несущего винта, а также обеспечивает путевой момент управления вертолетом.
При путевом равновесии вертолета момент силы тяги рулевого винта относительно центра масс вертолета равен реактивному моменту несущего винта.
При уменьшении или увеличении шага рулевого винта, которое осуществляется с помощью ножного управления, соответственно изменяется и тяга винта. Путевое равновесие вертолета нарушается, и вертолет разворачивается влево или вправо в зависимости от того, какой момент больше - реактивный момент несущего винта или момент тяги рулевого винта.
При полете на режиме самовращения несущего винта, когда реактивный момент несущего винта отсутствует, на вертолет действует момент от сил трения в опорах вала несущего винта, по направлению совпадающий с направлением вращения несущего винта. На этом режиме полета вертолета для путевого равновесия сила тяги рулевого винта должна быть направлена в противоположную сторону, и момент ее относительно центра масс вертолета равен моменту сил трения в опорах вала несущего винта. Поэтому рулевой винт - реверсивный, может использоваться не только как толкающий, но и как тянущий.
Рулевой винт является также органом статической путевой устойчивости вертолета, так как в полете ометаемый винтом диск положительно влияет на устойчивость вертолета.
Для равномерного распределения тяги по диску, ометаемому рулевым винтом в условиях косого обтекания, втулка винта имеет совмещенные горизонтальные шарниры типа "кардан", что позволяет лопастям совершать маховые движения относительно плоскости вращения втулки. Однако в результате отклонения плоскости вращения рулевого винта при маховых движениях лопастей появляется присущая простому кардану неравномерность вращения.
Наличие в конструкции втулки винта компенсатора взмаха с коэффициентом К = 1 приводит к уменьшению амплитуды маховых колебательных движений лопастей и, следовательно, снижает неравномерность вращения рулевого винта. Для изменения шага лопастей втулка винта имеет осевые шарниры. Привод рулевого винта производится от главного редуктора с помощью трансмиссии.
Лопасти рулевого винта имеют противообледенительное устройство электротеплового действия, обеспечивающее нормальную работу винта в условиях обледенения.
Рулевой винт состоит из втулки и трех лопастей (рис._5.1.).

Рис. 5.1. Рулевой винт:
1- втулка; 2- болты; 3- лопасть

Втулка рулевого винта.

Втулка рулевого винта предназначена для передачи крутящего момента на лопасти, а также для восприятия усилий от аэродинамических сил и передачи их на хвостовую балку. Втулка рулевого винта (рис._5.2.)

Рис. 5.2. Втулка рулевого винта:
1 -ползун; 2,12 - бронзовые втулки; 3 - ступица; 4 - ограничитель взмаха; 5. 11. 14 31 36 45 49 - гайки; 6, 32, 46, 48, 50 - роликовые подшипники; 7, 38, 41 регулировочные кольца; 8, 33, 37 - стаканы роликоподшипников; 9, 17, 40. 43 - армированные манжеты; 10 - пресс-масленка; 13 чехол; 15 - гайка-крышка; 16, 27 - шариковые подшипники; 18- поводок; 19 - тяга поворота лопасти; 20 - сферический подшипник; 21 - болт; 22 - масляный бачок; 23 - контрольный стакан; 24 - пробки; 25 - клапан; 26 - колпачковая гайка; 28 - валик; 29 - игольчатый подшипник; 30 - крышка; 34 - корпус кардана; 35 - траверса; 39 - шайба; 42, 44- - уплотнительные кольца; 47 - упорное кольцо; 51 - кольцо упорного подшипника; 52 - корпус осевого шарнира; 53- корпус втулки
состоит из ступицы, кардана, осевых шарниров, поводка с ползуном, тяг поворота лопасти.
Ступица 3 втулки - стальная, изготовлена за одно целое с фланцем, которым она при помощи болтов крепится к фланцу ведомого вала хвостового редуктора. На ступице установлены: ограничитель взмаха 4 и траверса 35, затянутые гайкой 11, которая фиксируется пластинчатым замком. Буртик гайки имеет кольцевую канавку для установки сальника, предотвращающего попадание грязи в полость ступицы. Внутри ступицы 3 имеются шлицы, по которым перемещается ползун 1. Направляющими ползуна являются бронзовые втулки 2 и 12, запрессованные в расточку ступицы. Во внутренние канавки втулок установлены резиновые уплотнительные кольца. В гайку 11 вмонтирована пресс-масленка, а во фланец ступицы 3 - клапан предельного давления для набивки и контроля смазки шлицевой пары.
Кардан втулки состоит из траверсы 35, корпуса 34 кардана и корпуса 53 втулки, изготовленных из легированной стали. Траверса 35 внутренними шлицами установлена на ступице 3. На двух цапфах траверсы смонтированы внутренние кольца конических роликовых подшипников 32 и регулировочные кольца 41, стянутые гайками 31. Регулировочные кольца 41 обеспечивают необходимый предварительный натяг подшипников.
Корпус 34 кардана имеет вид крестовины, во внутренние цилиндрические расточки которой запрессованы стальные стаканы 33 для установки наружных колец роликовых подшипников 32. Подшипники защищены от попадания пыли и влаги резиновыми армированными манжетами 40 и крышками 30, зафиксированными от осевого перемещения стопорными кольцами. Между крышкой 30 и наружным кольцом подшипника 32 установлено регулировочное кольцо. В резьбовые отверстия корпуса кардана и крышки 30 ввернуты пресс-масленки 10 для зашприцовки смазки в полость подшипника 6 и 32. На наружных цапфах корпуса кардана, ось которых составляет угол 90° с осью внутренней цилиндрической расточки корпуса, установлены стальные кольца под уплотнительные манжеты 9 и внутренние кольца конических роликовых подшипников 6. Наружные кольца этих подшипников закреплены в стальных стаканах 8 и 37, установленных в расточках корпуса 53 втулки. Стаканы закреплены в корпусе втулки гайками 5 и 36, законтренными стопорными шайбами. Предварительный натяг подшипников производится подбором по толщине регулировочных колец 7, 38 и шайбы 39.
Кардан втулки является совмещенным горизонтальным шарниром, общим для всех лопастей рулевого винта. Он обеспечивает наклон плоскости вращения корпуса втулки и лопастей на угол от -8° до + 10° от плоскости вращения ступицы 3.
Корпус 53 втулки имеет три цапфы, угол между осями которых равен 120°. Цапфы совместно с корпусами 52 осевых шарниров образуют осевые шарниры втулки. На цапфу напрессовываются упорное кольцо 47, на котором установлены специальный роликовый подшипник 46, гайка 45 и двухрядный упорный роликовый подшипник 48. Наружным кольцом подшипника 46, воспринимающего радиальные нагрузки от перерезывающих сил, является гайка 45 корпуса осевого шарнира. Упорное кольцо 47 зажимается на цапфе гайкой 49, законтренной пластинчатым замком. Момент затяжки гайки подобран таким образом, чтобы исключить раскрытие стыка этого соединения под действием центробежной силы и моментов, нагружающих осевой шарнир.
Беговыми дорожками для роликов подшипника 48 являются цементированные торцы гаек 45 и 49. Оси гнезд сепаратора этого подшипника повернуты от радиального направления на угол, равный 0°26". При вращении винта лопасти совершают колебательные движения относительно оси совмещенного горизонтального шарнира, а это вызывает не только качательное движение сепаратора подшипника 48, но и его непрерывное медленное вращение в одном направлении. Вследствие этого поверхность беговых дорожек гаек 45 и 49 изнашивается более равномерно, что позволяет значительно повысить надежность работы этого узла.
Предварительный натяг подшипника 48, воспринимающего центробежную силу лопасти и большую часть изгибающих моментов, осуществляется с помощью упорного роликового подшипника 50. Беговыми дорожками роликов этого подшипника являются поверхности торца гайки 49 и кольца 51, установленного в корпусе 52 осевого шарнира. Уплотнение полости осевого шарнира осуществляется кольцами 42 и 44, а также резиновой армированной манжетой 43, которая установлена в расточке гайки 45 и зафиксирована от осевого перемещения пружинным кольцом.
Корпус 52 осевого шарнира - стальной, пустотелый, снаружи имеет гребенку для крепления лопасти. В расточке бокового прилива корпуса на двухрядном шариковом 27 и игольчатом 29 подшипниках установлен валик 28 поворота лопасти. Внутренние кольца подшипников 27 и 29 через внутреннюю распорную втулку стянуты на валике 28 гайкой, наружные кольца этих подшипников через наружную распорную втулку зажаты в расточке прилива корпуса колпачковой гайкой 26. В головке валика установлены два шариковых радиальных подшипника, полость которых закрывается с торцов головки валика шайбами и связана с полостью подшипников 27 и 29 осевым сверлением в валике. На приливе корпуса имеется пресс-масленка для смазки подшипников валика 28.
Для обеспечения смазки подшипников осевого шарнира к корпусу шарнира специальным болтом 21 закреплен масляный бачок 22. Корпус бачка изготовлен из полиамида. На корпусе заделан контрольный стакан 23 из оргстекла, позволяющий определять наличие масла. Болт 21 имеет осевое и радиальные сверления, соединяющие полости бачка и осевого шарнира. На корпусе бачка выполнено глухое резьбовое отверстие с пробкой 24 из полиамида для заправки бачка маслом.
Узел поводка, обеспечивающий изменение шага рулевого винта, состоит из ползуна 1, поводка 18 и тяг 19 поворота лопастей. Поводок - стальной, своей ступицей запрессован на ползун 1, зафиксирован штифтом и гайкой 14. Поводок имеет три рычага, которые заканчиваются вилками для соединения с тягами 19. На ступице поводка установлена пресс-масленка для набивки смазки в полость подшипника 16. Ползун выполнен из легированной стали в виде пустотелого валика с наружными шлицами, соединяющими его со ступицей 3 втулки. В расточку головки ползуна в собственном корпусе установлена резиновая армированная манжета 17 и двухрядный радиально-упорный шариковый подшипник 16. Наружное кольцо подшипника совместно с буртиком корпуса манжеты зафиксировано резьбовой крышкой 15. В крышке имеется клапан предельного давления для предотвращения переполнения полости подшипника смазкой. Во внутреннее кольцо подшипника 16 установлена стальная втулка, которая монтируется на шток механизма изменения шага рулевого винта и совместно с кольцом затягивается на носке штока гайкой. Гайку контрят пластинчатой шайбой с обжатием ее с четырех диаметрально противоположных сторон и дополнительной установкой шплинта. Манжета узла подшипника предотвращает выбивание смазки из его рабочей полости. Выступающая из ступицы 3 часть ползуна между поводком и ступицей закрыта защитным резиновым чехлом 13.
Тяга 19 поворота лопасти, регулируемая по длине, состоит из вилки, стержня и ушкового наконечника. Стержень тяги имеет в средней части буртик с лысками под ключ и заканчивается резьбовыми участками с обоих концов. На стержень навернуты вилка и ушковый наконечник, фиксирующиеся контргайками. Вилка тяги соединена болтом с валиком 28, а ушковый наконечник с рычагом поводка 18. Соединение последнего с поводком осуществляется с помощью сферического шарнирного подшипника 20, установленного в отверстии ушка тяги. В головку пальца, стягивающего этот узел, ввернута масленка, через которую смазка по осевому и радиальному сверлениям в пальце и внутреннем кольце сферического подшипника подается в полость этого подшипника. Палец удерживается от проворачивания штифтом для предотвращения изнашивания. Сферический шарнир защищен от попадания пыли и влаги резиновым чехлом.
При изменении шага рулевого винта ползун 1, перемещаясь во втулках 2 и 12 в осевом направлении и вращаясь вместе со ступицей 3 через поводок 18 и тяги 19, поворачивает лопасти на определенный установочный угол, чем достигается изменение шага рулевого винта.

Лопасть.

Лопасть рулевого винта - цельнометаллическая, имеющая в плане прямоугольную форму. Лопасть не имеет аэродинамической и геометрической крутки, т. е. контуры сечений лопасти образованы профилем NАСА-23ОМ и установочные углы сечений постоянны по размаху.
Лопасть (рис._5.3.)

Рис. 5.3. Лопасть рулевого винта
1- комлевый наконечник; 2- пенопластовый вкладыш; 3- резиновый вкладыш; 4- лонжерон; 5- резьбовая втулка; 6- болт; 7- кронштейн; 8- штифт; 9- сотовый блок; 10- обшивка; 11- хвостовой стрингер;12- концевой обтекатель; 13- винт; 14- заглушка; 15- концевая нервюра; 16,19- шпильки; 17- анкерная гайка; 18- балансировочные грузы
состоит из лонжерона 4, хвостовой части, комлевого наконечника 1 и концевого обтекателя 12.
Лонжерон 4 изготовлен из алюминиевого сплава АВТ-1 и упрочнен методом наклепа. Наружная поверхность лонжерона механическим способом обработана до получения необходимого контура и полирована в продольном направлении.
К задней стенке лонжерона приклеена хвостовая часть лопасти. Хвостовая часть состоит из сотового блока 9, обшивки 10, хвостового стрингера 11 и концевой нервюры 15. Сотовый блок изготовлен из алюминиевой фольги толщиной 0,04 мм, пакет которой обработан в соответствии с контуром лопасти и растянут с образованием сот в виде шестигранников со стороной 5 мм. Снаружи сотовый блок оклеен обшивкой из двух слоев стеклоткани толщиной 0,3 мм. Стрингер 11 также изготовлен из двух слоев стеклоткани и наклеен снаружи вдоль хвостовой части лопасти на обшивку с заделкой торцов впотай. Концевая нервюра 15 изготовлена из авиаля. Стенкой она приклеена к наружному торцу сотового блока, а полками - обшивке хвостовой части. У комля лопасти соединение хвостовой части лонжероном усилено дюралюминиевым кронштейном 7, приклеенным к лонжерону и притянутым болтами 6.
В комлевой части лопасти к лонжерону закреплен стальной наконечник 1 с вкладышем 2, предназначенный для навески лопасти к втулке винта. Наконечник имеет гребенку с проушинами и две щеки, между которыми установлен лонжерон лопасти. Наконечник крепится к лонжерону штифтом 8 и восемью болтами 6, ввернутыми в резьбовые втулки 5.
Внутренняя полость лонжерона герметизирована. В комлевой части в торец лонжерона вклеен резиновый вкладыш 3, по контуру которого нанесен герметик. В концевой части лонжерона установлена заглушка 14 и имеются отверстия под пластины 18 балансировочных грузов, которые закреплены на шпильках 16 и 19. В концевой части лопасти установлена концевая нервюра 15, к которой винтами 13 через анкерные гайки 17 крепится концевой обтекатель 12, штампованный из алюминиевого сплава. Для предотвращения абразивного изнашивания на лобовой части обтекателя приклеена накладка из нержавеющей стали.
Лопасть рулевого винта оборудована электрическим нагревательным элементом, который наклеен снаружи на носок лонжерона и вписан в теоретический контур профиля. От механических повреждений нагреватель защищен слоем резины и оковкой из нержавеющей стали.

Техническое обслуживание.

Техническое обслуживание рулевого винта так же, как и несущего, предусматривает сохранение защитных покрытий втулки и лопастей, их целостность и надежность крепления, сохранение шарнирных моментов в сочленениях втулки, своевременное выявление дефектов и их устранение.
Лед, снег, иней с поверхности лопастей удаляются теплым воздухом от наземного подогревателя с температурой не выше 60° С с последующей протиркой поверхности насухо. Грязь устраняется чистой мягкой салфеткой, смоченной в теплой воде с 3%-ным раствором технического мыла. Масляные пятна удаляются салфеткой, смоченной в нефрасе с последующей протиркой чистой сухой салфеткой.
На рулевом винте контролируют: отсутствие механических повреждений, надежность контровки разъемных соединений, работу шарниров винта, состояние лопастей. При обнаружении трещин втулку рулевого винта следует заменить. Забоины, риски и царапины глубиной до 0,2 мм зачищаются шкуркой, заполировываются и покрываются бесцветным лаком. При выбивании смазки из-под пробок шарниров винта пробки подтягивают или на них заменяют уплотнительные прокладки.
Поверхностные забоины, риски и коррозионный налет без образования раковин на проушинах лопасти выводятся наждачной шкуркой с последующей полировкой пастой ГОИ и покрытием грунтом. На лакокрасочном покрытии материала обшивки лопастей допускаются потертости и царапины без повреждения стеклоткани с последующей зачисткой, грунтовкой и покраской.
Контроль качества приклейки обшивки к сотовому заполнителю, лонжерону, стрингеру и нервюре лопасти, а также противообледенительного устройства лопасти к лонжерону производится простукиванием молоточком и на ощупь, не снимая лопасти с втулки. Участок шириной 30 мм от хвостового стрингера проверке простукиванием не подлежит.
Допускаются к эксплуатации лопасти рулевого винта при нарушении склейки обшивки хвостового отсека с лонжероном, не выходящие на край отсека, общей площадью не более 16 см2 при одиночном нарушении склейки не более 4 см2. Нарушение склейки обшивки с сотовым заполнением не должно превышать по общей площади 30 см2 с каждой стороны отсека при одиночном нарушении склейки не более 5 см2. В том и другом случаях расстояние между двумя соседними нарушениями должно быть не менее 50 мм.
Вмятины на хвостовой части лопасти допускаются глубиной до 0,5 мм при наличии их не более трех и до 0,8 мм не более одной. Стрела прогиба хвостового стрингера может быть не более 3 мм. На законцовках допускаются плавные вмятины глубиной до 0,8 мм и царапины до 0,4 мм при длине не более 25 мм.
При контроле противообледенительного устройства лопасти не допускаются непроклеи между нагревательной накладкой и лонжероном, а также вспучивание резины.
Техническое обслуживание втулки винта предусматривает периодический замер зазора валиков и вилок рычагов поворота лопастей винта. При этом проверяются зазор валика рычага в плоскости тяги и в плоскости вращения винта, а также осевой зазор вилки тяги относительно валика рычага.
В первом случае лопасти винта устанавливают на максимальный угол (правая педаль вперед до упора). На бачок визуального контроля масла в осевом шарнире закреплено специальное приспособление
(рис._5.4.),

Рис. 5.4. Установка приспособления для замера люфта валиков и вилок рычагов поворота лопастей рулевого винта:
1,2,4- винты регулировки положения индикатора; 3- кронштейн;;5- индикатор; 6- винт-фиксатор; 7- скоба
фиксированное винтом 6 на пробке бачка. Ножка 5 индикатора приспособления с натягом 0,6 мм подведена к сферической поверхности (точка А) валика поворота лопасти и затянута винтами 1, 2, 4. Угол между плоскостью замера и ножкой индикатора должен быть не более 10°. Поворотом шкалы стрелку индикатора устанавливают на "0". Прикладывая к корпусу осевого шарнира усилие по часовой и против часовой стрелки, фиксируют крайние положения стрелки индикатора. По сумме показаний индикатора определяют зазор валика, который не должен превышать 0,45 мм.
Во втором случае аналогичным образом ножку индикатора приспособления с натягом 0,6 мм подводят к щеке (точка Б) валика поворота лопасти, после чего стрелку индикатора также устанавливают на 0. Покачивая валик в плоскости вращения винта к индикатору и от него, фиксируют крайние положения стрелки, суммарная величина показаний которой не должна превышать 0,45 мм.
После этого проверяют зазор валиков рычагов в плоскости тяги и в плоскости вращения винта двух других лопастей. В обоих случаях при обнаружении зазора, равного 0,43 мм, решается целесообразность дальнейшей эксплуатации втулки рулевого винта.
Проверку осевого зазора вилки тяги относительно валика рычага поворота лопасти ведут тем же приспособлением. Для проверки следует, перемещая индикатор в скобе 7 и кронштейне 3, установить ножку 5 индикатора на плоскость поверхности (точка В) вилки с натягом 0,6 мм. После затяжки винтов 1, 2, 4 поставить стрелку индикатора на "0" и, покачивая вилку в плоскости вращения винта к индикатору и от него с максимальным усилием, зафиксировать крайние положения стрелки индикатора. Зазор вилки определяют путем вычитания из суммарных показаний стрелки индикатора зазора валика рычага в плоскости вращения винта. Полученная величина является зазором вилки и не должна превышать 0,2 мм. Аналогично проверяют осевой зазор вилок тяг двух других осевых шарниров. Вопрос о целесообразности дальнейшей эксплуатации втулки решается при наличии зазора 0,18 мм.
Двухрядный шариковый подшипник, обеспечивающий независимость возвратно-поступательного движения штока от вращательного движения поводка втулки винта, является высоконагруженным конструктивным элементом. Поэтому при выполнении обслуживания втулки рулевого винта замеряют осевой зазор этого подшипника. Для выполнения работы следует расконтрить и отвернуть крышку ползуна и вынуть шплинт гайки штока редуктора. В резьбовую расточку ползуна завернуть крышку 5
(рис._5.5.)

Рис. 5.5. Установка приспособления для замера осевого люфта подшипника штока рулевого винта:
1- ножка индикатора; 2- корпус приспособления; 3,4- винт-фиксатор; 5- крышка приспособления
приспособления с моментом затяжки 4 кгс·м. На шестигранник крышки установить приспособление 2 и закрепить его винтами 4, а в расточку приспособления поставить индикатор и, создав натяг 0,4...0,5 мм, закрепить его винтом 3. После установки индикатора переместить его ножку 1 в сторону, противоположную индикатору, и стрелку индикатора поставить в положение 0. Переместить педали ножного управления вправо, а затем влево и зафиксировать при этом показания индикатора, сумма которых и образует величину зазора, который не должен превышать 0,08 мм. При зазоре 0,06 мм требуются дополнительное внимание и решение вопроса о дальнейшей эксплуатации винта. После проверки следует демонтировать приспособление, установить шплинт гайки штока и затянуть крышку ползуна с моментом (8 + 2) кгс·м, законтрить ее и зашприцевать в полость подшипника смазку ЦИАТИМ-201.
При проверке момента затяжки гаек крепления втулки рулевого винта к фланцу хвостового редуктора пользуются тарировочным ключом. Затяжку гаек ведут перекрестным чередованием с моментом 6...10 кгс·м.
В осевых шарнирах втулки рулевого винта при положительной температуре или при кратковременном ее понижении до -10° С применяют масло МС-20, а в зимнее время при температуре от 5 до -50° С - масло ВНИИ НП-25. Для контроля уровня масла каждую из лопастей устанавливают вертикально вниз и по контрольным стаканчикам проверяют уровень масла в осевом шарнире, который должен быть не ниже контрольной риски, нанесенной на стакане, и не выше 15 мм от его верхнего края.
В случае необходимости дозаправляют или заменяют масло в осевых шарнирах. При дозаправке лопасть устанавливают в заднее горизонтальное положение, и левую педаль перемещают вперед с целью выдвижения штока с ползуном. На корпусе осевого шарнира и контрольном стаканчике выворачивают пробки 1 (рис._5.6.)

Рис. 5.6. Заправка масла в осевой шарнир внутри рулевого винта:
1- пробка осевого шарнира; 2- баллон; 3- колпачок вентиляционной трубки баллона; 4- пробка бачка осевого шарнира
и 4 и в отверстие корпуса устанавливают приспособление, из баллона 2 которого производят дозаправку шарнира маслом. После этого лопасть поворачивают на; 15...20° вверх, приспособление переставляют в отверстие стаканчика и масло доливают до его верхнего уровня. При замене масла в осевом шарнире лопасть устанавливают на 10...15° выше горизонтального положения в направлении к фюзеляжу. На корпусе осевого шарнира подвешивают емкость и выворачивают пробки 1 и 4, обеспечивающие слив масла из шарнира. Для заправки шарнира лопасть устанавливают в горизонтальное положение. При этом валик рычага поворота лопасти должен находиться в верхнем положении.
Установить заправленный чистым маслом баллон 2 приспособления в резьбовое отверстие корпуса шарнира, предварительно сняв с него колпачок 3 вентиляционной трубки. Отвернуть пробку бачка с целью суфлирования полости шарнира и заправить шарнир маслом путем полного слива последнего из баллона приспособления. Для ускорения заправки шарнира масло сжимают стенки полиэтиленового баллона приспособления с одновременным закрытием его вентиляционной трубки. После полной заправки шарнира маслом по контрольным стаканчикам бачка проверяют уровень масла. Аналогичным путем заменяют масло в других осевых шарнирах.
Карданный шарнир, подшипники штока, поводка и валиков осевых шарниров, а также шлицы ползуна смазывают смазкой ЦИАТИМ-201 путем зашприцовки ее рычажно-плунжерным шприцом через пресс-масленки узлов втулки.

Общие сведения.

Трансмиссия (рис._6.1.)

Рис. 6.1. Трансмиссия вертолета
1- двигатели; 2- вентилятор; 3- главный редуктор; 4- хвостовой вал трансмиссии; 5- промежуточный редуктор; 6- хвостовой редуктор
предназначена для передачи мощности двигателей на несущий и рулевой винты с необходимыми частотами вращения, соответствующими наивыгоднейшим условиям работы винтов.
Основными агрегатами трансмиссии являются: главный редуктор ВР-8А, промежуточный редуктор ПР-8, хвостовой редуктор ХР-8, хвостовой вал трансмиссии, тормоз несущего винта и вал привода вентилятора 2.
Крутящий момент от двигателей 1 к главному редуктору 3 передается через две его муфты свободного хода, которые автоматически отключают один или оба двигателя от редуктора в случаях понижения частоты вращения свободных турбин или останова двигателей (двигателя). Это необходимо для обеспечения перехода несущего винта на режим самовращения с целью посадки вертолета. Главный редуктор передает крутящий момент на несущий винт и агрегаты, установленные на редукторе.
Передача крутящего момента на рулевой винт осуществляется хвостовым валом 4 трансмиссии через промежуточный 5 и хвостовой 6 редукторы.

Главный редуктор ВР-8А.

Главный редуктор предназначен для передачи крутящего момента от двигателей к несущему винту вертолета, а также для привода агрегатов, установленных на редукторе.
Понижение частоты вращения в главном редукторе достигается применением трех ступеней редукции.
Первая ступень представляет собой два ведущих цилиндрических косозубых колеса, которые приводятся во вращение от двигателей и находятся в зацеплении с третьим, общим для них ведомым зубчатым колесом. Вторая ступень редукции состоит из двух конических зубчатых колес со спиральными зубьями. Третья ступень редукции выполнена по схеме замкнутого дифференциального механизма, состоящего из дифференциала и замыкающей цепи дифференциала.
От главного редуктора обеспечивается привод ряда агрегатов, работа которых возможна и в случае отказа силовой установки. Кинематическая схема редуктора представлена на рис._6.2.

Рис. 6.2. Кинематическая схема редуктора:
а - привод генератора СГО-ЗОУ-4; б, г - приводы датчиков счетчиков оборотов; в, л - приводы гидронасосов НШ-39М; д - приводы от двигателей; е - муфты свободного хода; ж - привод вентилятора; ;з - привод несущего винта; и - привод рулевого винта; к - привод компрессора АК-50ТЗ; м -привод масляного агрегата; с-запасной привод; 1-3 - зубчатые колеса привода генератора; 4-9, 31-34 - зубчатые колеса приводов агрегатов, установленных на левой стороне редуктора; 10, 11, 16-зубчатые колеса первой ступени редукции; 12-15 - зубчатые колеса привода вентилятора; 17 - ведомое зубчатое колесо дифференциала; 18 - сателлит; 19 - двойное зубчатое колесо; 20 - промежуточное зубчатое колесо замыкающей цепи дифференциала; 21, 36 - зубчатые колеса II ступени редукции; 22, 35 - зубчатые колеса привода рулевого винта; 23-29 - зубчатые колеса привода агрегатов, установленных на правой стороне редуктора; 30-ведущее зубчатое колесо привода агрегатов; 37 - нижний ненец двойного зубчатого колеса; 38- ведущее зубчатое колесо дифференциала

Главный редуктор установлен на потолочной панели фюзеляжа вертолета и закреплен к узлам силовых шпангоутов при помощи рамы.
Редуктор (рис._6.3.)

Рис. 6.3. Продольный разрез редуктора ВР-8А:
1, 2- ведущие зубчатые колеса второй и первой ступени; 3, 5 - ведомый и ведущий валы муфты свободного хода; 4 - сепаратор с роликами; 6 - корпус подшипника; 7- шлицевая втулка; 8 - сферическая пята; 9-рессора привода вентилятора; 10, 13 - ведущее и ведомое зубчатые колеса привода вентилятора; 11 - промежуточные колеса привода вентилятора; 12- крышка привода вентилятора; 14 - шлицевый фланец привода; 15 - передняя крышка корпуса; 16, 29 - ведомые зубчатые колеса I и II ступени; 17 - корпус редуктора; 18 - корпус вала несущего винта; 19 - колоколообразное зубчатое колесо; 20, 45 - верхний и нижний венцы двойного зубчатого колеса; 21 - корпус сателлитов; 22-вал несущего винта; 23 - маслоперепускная труба; 24 - крышка; 25 - ведущее зубчатое колесо дифференциала; 26 - сателлит; 27-коллекторы маслосистемы; 28-промежуточные зубчатые колеса; 30 - вертикальный вал; 31 - корпус привода рулевого винта; 32 - ведомое зубчатое колесо привода рулевого винта; 33- шлицевый фланец привода; 34 - корпус лабиринтного уплотнения; 35 - ведущее зубчатое колесо привода рулевого винта; 36- ведущее зубчатое колесо приводов агрегатов; 37 - сетчатый фильтр; 38 - поддон редуктора; 39 - маслотрубопровод; 40- магнитная пробка; 41, 42 - нижняя и верхняя маслоперепускные втулки; 43- шлицевая втулка; 44 - корпус промежуточных зубчатых колес; 46 - опора двойного зубчатого колеса
состоит из следующих основных узлов: картера, двух муфт свободного хода, привода вала несущего винта, вала несущего винта, привода рулевого винта и приводов агрегатов.
Картер редуктора является силовым элементом, передающим аэродинамические силы от несущего винта на фюзеляж.
Картер отлит из магниевого сплава. Он состоит из корпуса 17 редуктора, корпуса 18 вала 22 несущего винта и поддона 38 редуктора.
Корпус 17 редуктора в верхней части имеет снаружи силовой пояс с пятью фланцами для крепления подредукторной рамы и фланец со шпильками для соединения с корпусом 18 вала 22 несущего винта.
Внутри корпуса редуктора выполнены цилиндрическая расточка с фланцем для установки нижней половины корпуса 44 промежуточных зубчатых колес и вертикальная стенка с расточкой под задний роликоподшипник вала конического зубчатого колеса 1.
В цилиндрических расточках передних приливов корпуса установлен корпус подшипников вала конического зубчатого колеса 1 второй ступени и роликовые подшипники ведомых валов муфт свободного хода.
К переднему фигурному фланцу корпуса редуктора крепят корпус зубчатых колес 2 и 16 первой ступени и муфт свободного хода, а также крышку 12 привода вентилятора. На боковой поверхности корпуса ввернут штуцер для установки датчика давления масла.
В нижней части корпуса редуктора расположена горизонтальная стенка, в центральную расточку которой запрессована обойма роликового и шарикового подшипников вертикального вала 30. Кроме того, в расточках горизонтальной стенки установлены стаканы подшипников валов конических зубчатых колес приводов агрегатов. К фланцу нижней части корпуса крепят поддон 38 редуктора.
Сзади в приливе корпуса редуктора выполнена цилиндрическая расточка для установки корпуса 31 привода рулевого винта. По обеим сторонам корпуса имеются фланцы для крепления боковых крышек приводов. С целью подвода масла на смазку деталей механизма редуктора в стенках его корпуса выполнены каналы с жиклерами и форсунками.
Корпус 18 вала несущего винта в верхней части имеет цилиндрическую расточку и фланец. В расточку корпуса запрессована стальная ступенчатая обойма, в которую вмонтирован радиальный роликовый и радиально-упорный шариковый подшипник вала несущего винта. На корпусе просверлены отверстия для прохода болтов крепления опорного фланца, фиксирующего наружное кольцо шарикоподшипника вала несущего винта в обойме. Этими же болтами крепят и крышку 24 с сальником, закрывающую внутреннюю полость картера сверху. Напрессованный на вал несущего винта конический отражатель совместно с конической поверхностью крышки 24 образует влагоуплотнительный лабиринт. В крышке просверлены отверстия для прохода болтов крепления направляющей автомата перекоса.
В задней части корпуса вала несущего винта расположены фланцы для крепления кронштейна гидроусилителей и кронштейна рычага общего автомата перекоса.
В нижней части корпус вала несущего винта имеет фланец для соединения с корпусом редуктора. В боковое отверстие корпуса ввернут суфлер, сообщающий внутреннюю полость картера редуктора с атмосферой.
Поддон 38 редуктора, являющийся одновременно масляным баком, установлен в нижней части редуктора. Поддон отлит из магниевого сплава, в верхней части имеет фланец для крепления к корпусу редуктора и внутренний фланец для установки сетки 37.
Внутри поддона отлита фигурная стенка с отверстиями, отделяющая полость с нагретым маслом, сливающимся из картера редуктора, от полости холодного масла. В поддоне имеются ряд приливов с каналами для прохода масла и колодец для установки масляного фильтра.
В центральное отверстие поддона запрессована маслоперепускная втулка 41, в проточки которой заделаны две трубы маслопровода 39. В стенке маслоперепускной втулки 41 выполнены отверстия для прохода масла из кольцевой канавки центрального отверстия поддона в кольцевую полость маслопровода. В нижней части поддона имеется фланец для крепления масляного агрегата редуктора.
В передней части поддона отлит колодец, в который установлен масляный фильтр тонкой очистки. Справа на боковой поверхности поддона имеется фланец для крепления заливной горловины. В горловине установлены сетчатый фильтр и крышка, удерживаемая в закрытом положении траверсой. Для контроля уровня масла в редукторе на заливной горловине установлено масломерное стекло. Кроме того, на поддоне выполнены фланец с отверстием для крепления патрубка подвода масла из радиаторов и два резьбовых отверстия для установки датчиков температуры масла. В отверстиях боковой поверхности поддона размещены три магнитные пробки 40, предназначенные для улавливания металлических частиц, попадающих в масло.
Привод вала несущего винта состоит из муфт свободного хода, цилиндрической передачи I ступени, конической передачи II ступени и дифференциально-замкнутой передачи.III ступени редуктора.
В конструкции главного редуктора предусмотрены две муфты свободного хода, каждая из которых состоит из втулки 7, ведущего вала 5, сепаратора с роликами 4, ведомого вала 3, корпуса 6 и деталей маслоуплотнения.
Механизмы муфт свободного хода собраны в расточках передней крышки 15, закрепленной к корпусу картера. Спереди к крышке крепят два корпуса 6 шариковых подшипников ведущих валов муфт.
Ведущий вал 5 муфты свободного хода - стальной, переменного сечения, опирается на два подшипника: шариковый, установленный в расточке корпуса 6, и роликовый, установленный внутри ведомого вала 3 муфты свободного хода. В передней части ведущего вала 5 нарезаны шлицы для установки втулки 7, которая совместно с маслоперепускным кольцом и внутренним кольцом шарикоподшипника закреплена на ведущем валу. Для предотвращения выбивания масла из полости муфты на ступице шлицевой втулки 7 смонтирован уплотнительный узел. Средняя часть ведущего вала представляет собой звездочку с 16 площадками, которые имеют специальный профиль с цементированной поверхностью для стальных цилиндрических роликов сепаратора 4.
Сепаратор муфты свободного хода предназначен для одновременного включения в работу всех роликов. Сепаратор установлен на звездочке ведущего вала и в осевом направлении может перемещаться в небольших пределах между разрезными стопорными кольцами, установленными в канавках на цилиндрической поверхности звездочки. В задней части сепаратора выполнены выступы, входящие в пазы на цилиндрической поверхности звездочки ведущего вала. Такое сочленение применено для ограничения хода роликов с сепаратором при выключении муфты свободного хода.
Ведомый вал 3 - стальной, пустотелый, переменного сечения. Он установлен на двух подшипниках: шариковом радиально-упорном и роликовом радиальном. Передняя часть ведомого вала развернута в обойму, имеющую внутреннюю цилиндрическую расточку.
Втулка 7 предназначена для присоединения рессоры главного привода двигателя к ведущему валу муфты свободного хода. Она изготовлена из легированной стали и имеет в передней части наружные сферические цементированные шлицы, соединяемые при сочленении с ответными внутренними шлицами рессоры двигателя.
Для устранения продольных колебаний приводной рессоры внутри стакана, запрессованного в расточку ведущего вала муфты с наружной стороны, установлена пружина, отжимающая рессору в сторону двигателя через пяту 8.
Включение и выключение муфты свободного хода происходят автоматически в зависимости от скорости вращения ведущего и ведомого валов. При вращении ведущего вала происходит заклинивание роликов между рабочими поверхностями звездочки ведущего вала и обоймой ведомого вала. При этом ведущий и ведомый валы муфты начинают вращаться с одинаковой частотой вращения (включение муфты). Когда частота вращения ведущего вала начнет уменьшаться (что характеризует уменьшение оборотов двигателя), а ведомый вал вследствие инерции вращения винтов и трансмиссии будет продолжать вращаться и обгонять ведущий вал, ролики выйдут из заклинивания и установятся во впадины звездочки ведущего вала (выключение муфты).
С ведомых валов муфт свободного хода мощность обоих двигателей передается через ведущие зубчатые колеса 2 ступени I редукции на общее ведомое зубчатое колесо 16.
Цилиндрическая передача I ступени состоит из двух ведущих зубчатых колес 2 и ведомого зубчатого колеса 16.
Ведущее зубчатое колесо 2 имеет цилиндрический венец с зубьями наружного зацепления и ступицу с внутренними шлицами для крепления на ведомом валу муфты свободного хода. Ведомое колесо 16 состоит из зубчатого колеса и опорного диска, который своей ступицей напрессован на ступицу зубчатого колеса и прикреплен к нему болтами. Опорный диск увеличивает жесткость ведомого зубчатого колеса при незначительной его массе. Во внутренней расточке ступицы колеса имеются шлицы для установки его на вал ведущего конического зубчатого колеса II ступени.
Ведомое зубчатое колесо 16 ступени I редукции передает суммарный крутящий момент от обоих двигателей на вал ведущего конического зубчатого колеса 1 ступени II редукции. Ступень II редуктора составляют ведущее 1 и ведомое 29 конические зубчатые колеса, а также вертикальный вал 30.
Ведущее коническое зубчатое колесо 1 изготовлено совместно с валом. Его устанавливают на трех подшипниках: двух радиальных роликовых и одном радиально-упорном шариковом. Внутреннее кольцо заднего роликового подшипника закреплено гайкой на валу колеса, а наружное установлено в обойме, запрессованной в расточку корпуса редуктора.
В передней части на вал ведущего зубчатого колеса установлены внутренние кольца передних подшипников вала с регулировочным кольцом между ними, а на шлицах - ведомое зубчатое колесо 16 ступени I, закрепленное гайкой. Наружные кольца передних подшипников вала зубчатого колеса 1 установлены в стальной обойме, запрессованной в цилиндрическую расточку корпуса подшипников. Наружное кольцо роликового подшипника запрессовано в обойму и зафиксировано от осевого перемещения разрезным стопорным кольцом, установленным в канавке обоймы. Наружное кольцо упорного шарикового подшипника установлено в обойме с радиальным зазором и зафиксировано от осевого перемещения упорным фланцем, закрепленным на шпильках корпуса подшипников. Такая установка шарикоподшипника разгружает его от восприятия радиальных нагрузок, и подшипник воспринимает только осевые нагрузки, действующие на вал зубчатого колеса 1.
В передней части внутри вала ведущего зубчатого колеса 1 имеется внутренний буртик, в цилиндрической расточке которого нарезаны эвольвентные шлицы для установки рессоры 9 привода вентилятора.
Ведомое коническое зубчатое колесо 29 ступени II изготовлено из легированной стали и имеет зубчатый венец с цементированными спиральными зубьями. В расточке ступицы колеса нарезаны эвольвентные шлицы и имеется цилиндрическая цементирующая поверхность для установки зубчатого колеса на вертикальный вал 30, который выполнен из легированной стали и имеет изменяющийся по длине диаметр. Вал опирается на два роликовых и один радиально-упорный шариковый подшипники. Внутренние кольца роликовых подшипников установлены на валу, а шарикового - на хвостовике ведущего зубчатого колеса 36 приводов агрегатов. Наружное кольцо верхнего роликового подшипника установлено в центральной расточке нижней половины корпуса зубчатых колес и от осевого перемещения зафиксировано разрезным стопорным кольцом. Наружные кольца нижних подшипников вала установлены в одной общей стальной обойме, запрессованной в центральную расточку горизонтальной перегородки корпуса 17 редуктора. От осевого перемещения наружные кольца роликового и шарикового подшипников удерживаются специальным фланцем, закрепленным на шпильках перегородки снизу.
На наружной поверхности верхней части вала 30 имеются упорный буртик, цилиндрическая часть, участок с эвольвентными шлицами и резьбовой участок. На цилиндрическую часть вала напрессовано внутреннее кольцо верхнего роликового подшипника, а на шлицах установлено ведомое коническое зубчатое колесо 29 ступени II, детали зажаты на валу гайкой, законтрены винтами, ввернутыми в вал 30 через пазы гайки.
Внутри верхней части вала 30 имеются цилиндрическая расточка и внутренние эвольвентные шлицы. В цилиндрической расточке установлены наружное кольцо нижнего роликового подшипника вала 22 несущего винта и переходная шлицевая втулка 43. Между ними проложено опорное кольцо, ограничивающее нижнее положение шлицевой втулки. Перемещение шлицевой втулки вверх ограничивается стопорным кольцом, установленным в канавке расточки верхней части вала 30. На нижней части вала снаружи имеется буртик, цилиндрические и шлицевые площадки. На верхние шлицы вала посажено ведущее коническое зубчатое колесо 35 привода рулевого винта, которое упирается в буртик вала через регулировочное кольцо. Кольцо обеспечивает необходимую регулировку зубчатого зацепления привода рулевого винта. На цилиндрический участок вала установлены упорное кольцо и внутреннее кольцо нижнего роликового подшипника. На нижнем шлицевом поясе установлено ведущее зубчатое колесо 36 приводов агрегатов, несущее на цилиндрическом участке своего хвостовика внутренние кольца радиально-упорного шарикоподшипника. Установленные на нижней части вала 30 детали стянуты гайкой и фиксируются от проворачивания пластинчатым замком.
Дифференциально-замкнутая передача III ступени редуктора состоит из ведущего цилиндрического зубчатого колеса, пяти сателлитов 26, двойного зубчатого колеса, семи промежуточных зубчатых колес и колоколообразного зубчатого колеса 19 с внутренним зацеплением. Ведущим звеном дифференциальной ступени является зубчатое колесо 25, передающее крутящий момент на пять сателлитов 26, установленных на корпусе 21, жестко связанном с валом 22 несущего винта. С сателлитов 26 часть мощности передается непосредственно на вал 22 несущего винта, другая часть мощности с них передается через двойное зубчатое колесо на семь промежуточных зубчатых колес, приводящих во вращение колоколообразное зубчатое колесо 19, связанное с валом 22 несущего винта.
Ведущее зубчатое колесо 25 дифференциальной ступени редуктора представляет стальной полый вал, имеющий в нижней части наружные эвольвентные шлицы, а в верхней - цилиндрический зубчатый венец с цементированными зубьями. Шлицами оно соединяется с валом 30 редуктора через шлицевую втулку и от осевого перемещения удерживается с одной стороны внутренним буртиком втулки, с другой - опорной втулкой, установленной в расточке шлицевой втулки и закрепленной специальной гайкой.
Сателлит 26 дифференциала представляет собой стальное цилиндрическое зубчатое колесо с цементированными зубьями наружного зацепления. Сателлиты устанавливаются в корпусе 21 на двух радиальных роликовых подшипниках каждый. Торцы ступицы сателлита имеют шлицы для удерживания от проворачивания специального болта, которым сателлит крепится в корпусе.
Корпус сателлитов состоит из двух половин: верхней и нижней, соединенных между собой. Каждая половина корпуса сателлита представляет собой стальной диск с пятью цилиндрическими гнездами для установки наружных колец роликовых подшипников сателлитов. Верхняя половина корпуса имеет венец с внутренними шлицами для соединения с ответными шлицами вала несущего винта и наружный шлицевый венец для установки колоколообразного зубчатого колеса 19. Кроме шлицевой связи, соединение корпуса 21 сателлитов с валом 22 несущего винта осуществляется двумя рядами специальных болтов.
Сателлиты установлены в корпусе 21 при монтаже его половин. Внутренние кольца роликовых подшипников сателлитов напрессовывают на ступицы сателлитов и закрепляют болтами, под гайки которых подкладывают стальные опорные шайбы с торцовыми шлицами. На внутренней торцовой поверхности головок болтов крепления сателлитов также расположены торцовые шлицы. Это позволяет жестко фиксировать внутренние кольца подшипников сателлитов относительно их ступиц.
Двойное зубчатое колесо состоит из верхнего 20 и нижнего 45 зубчатых колес, соединенных между собой опорой 46. Верхнее зубчатое колесо 20 изготовлено из легированной стали и имеет зубчатый венец внутреннего зацепления и фланец, которым колесо соединено с фланцем опоры. Опора представляет собой диск, в верхней части которого имеется соединительный фланец для установки верхнего зубчатого колеса 20, в нижней - ступица с цилиндрической расточкой, в которой нарезаны шлицы. Нижнее зубчатое колесо - пустотелое, в верхней части имеет наружные шлицы с кольцевой канавкой, а в нижней - цилиндрический зубчатый венец наружного зацепления. Во внутреннюю цилиндрическую расточку зубчатого колеса установлено наружное кольцо радиального шарикового подшипника, являющегося опорой для этого зубчатого колеса. Внутреннее кольцо этого подшипника зажато на наружной цилиндрической поверхности шлицевой втулки 43 гайкой.
На шлицы нижнего зубчатого колеса установлена опора двойного зубчатого колеса, которую фиксируют от осевого перемещения пластинами, входящими в кольцевую канавку зубчатого колеса и закрепленными винтами к внутреннему фланцу опоры.
Соединение опоры с верхним зубчатым колесом 20 осуществляется по их фланцам болтами.
Нижнее зубчатое колесо приводит во вращение семь промежуточных зубчатых колес 28, которые по конструкции аналогичны сателлитам.
Корпус 44 промежуточных зубчатых колес состоит из верхней и нижней половин. В нижней половине корпуса имеется семь гнезд для установки наружных колец нижних радиальных роликовых подшипников промежуточных зубчатых колес 28 замыкающей цепи дифференциала. Наружные кольца верхних роликовых подшипников этих зубчатых колес установлены в расточках верхней половины корпуса зубчатых колес. Обе половины корпуса зубчатых колес соединены между собой болтами, крепятся к корпусу редуктора и воспринимают ту часть реактивного момента несущего винта, которая возникает в замыкающей цепи дифференциала.
Промежуточные зубчатые колеса 28 находятся в зацеплении с колоколообразным зубчатым колесом 19 замыкающей цепи дифференциала. Зубчатое колесо 19-стальное, колоколообразной формы, в нижней части имеет зубчатый венец внутреннего зацепления, а в верхней - ступицу с внутренними эвольвентными шлицами и кольцевой канавкой. Колоколообразное зубчатое колесо установлено на шлицах верхней половины корпуса 21 сателлитов и фиксируется от осевого перемещения замком. Такая установка зубчатого колеса 19 позволяет ему самоцентрироваться при работе редуктора.
Вал 22 несущего винта - стальной, пустотелый, в средней части развернут в диск с наружными шлицами для установки и крепления корпуса сателлитов 21. На верхней части вала, прилегающей к диску, имеются наружный буртик, цилиндрический пояс и резьба. На этот участок последовательно устанавливают регулировочное кольцо, внутреннее составное кольцо радиально-упорного шарикового подшипника, регулировочное кольцо, внутреннее кольцо радиального роликового подшипника и гайку, навернутую на резьбу вала.
Радиально-упорный шариковый подшипник воспринимает осевые и радиальные нагрузки от несущего винта, а роликовый подшипник воспринимает радиальные нагрузки, частично разгружая от этих нагрузок шариковый подшипник.
На носке вала 22 расположен упорный буртик, эвольвентные шлицы и резьба, предназначенные для установки и крепления несущего винта вертолета.
Коническая нижняя часть вала заканчивается хвостовиком, на наружной поверхности которого имеются упорный буртик, цилиндрическая часть и резьба, необходимые для монтажа и крепления внутреннего кольца роликового подшипника вала несущего винта.
В цилиндрическую расточку нижней части вала несущего винта 22 запрессована и зафиксирована маслоперепускная труба 23, которая центрируется в полости вала двумя цилиндрическими поясками, расположенными на ее концах. Уплотнение масляной полости, образованной стенками трубы и вала несущего винта, обеспечивается резиновыми кольцами, установленными в кольцевых канавках цилиндрических поясков трубы. Внутри нижнего конца трубы 23 установлены резиновая армированная манжета и маслоуплотнительная втулка, зафиксированные стопорным кольцом. Снизу в трубу вала запрессована и законтрена стопором стальная маслоперепускная втулка, по внутренней поверхности которой работает шесть чугунных маслоуплотнительных колец перепускной маслоуплотнительной втулки маслопровода 39. В перепускной маслоуплотнительной втулке маслопровода и маслоперепускной втулке трубы вала несущего винта предусмотрены радиальные и осевые отверстия для прохода масла.
Привод рулевого винта состоит из ведущего конического зубчатого колеса 35, ведомого конического зубчатого колеса 32, корпуса 31 привода, конических роликовых подшипников, шлицевого фланца 33 и узла уплотнения.
Ведущее коническое зубчатое колесо 35 имеет на ступице внутренние шлицы, которыми оно соединено со шлицами вала 30 редуктора с предварительным нагревом зубчатого колеса перед соединением.
Ведомое коническое зубчатое колесо 32 выполнено вместе с пустотелым валиком привода. В передней части колесо имеет конический зубчатый венец наружного зацепления. На цилиндрическую часть валика, прилегающую к диску зубчатого венца, напрессовано внутреннее кольцо конического роликового подшипника и зажато на валике гайкой, законтренной пластинчатым замком. На хвостовике валика ведомого конического зубчатого колеса имеются наружный буртик, цилиндрическая часть и шлицевый участок. Сюда устанавливают регулировочное кольцо, внутреннее кольцо конического роликового подшипника, маслоотражатель и шлицевый фланец 33, которые зажимаются на хвостовике гайкой, ввернутой во внутреннюю резьбу хвостовика и законтренной пластинчатым замком. Во внутренней полости валика установлена дюралюминиевая заглушка.
Шлицевый фланец 33 имеет квадратный фланец с четырьмя отверстиями для присоединения хвостового вала трансмиссии и хвостовик с маслогонной резьбой. С внутренней стороны фланца нарезаны шлицы.
Корпус 31 привода рулевого винта отлит из магниевого сплава, наружным фланцем его крепят на шпильках фланца задней части корпуса 17 редуктора. Между фланцами корпусов 17 и 31 установлено регулировочное кольцо. Наружный фланец корпуса 31 привода имеет отверстия под шпильки крепления и отверстия с запрессованными бронзовыми резьбовыми втулками для съемника. С заднего торца в корпус привода ввернуты шпильки для крепления корпуса 34 лабиринтного уплотнения.
На поверхности корпуса привода обработаны два цилиндрических пояса, которыми корпус центрируется в расточке корпуса редуктора. Между корпусом привода и внутренней поверхностью расточки корпуса редуктора образуется кольцевая масляная полость с установленной в корпусе привода форсункой.
В расточках передней и задней частей корпуса привода запрессованы стальные обоймы, в которые установлены и зафиксированы наружные кольца переднего и заднего конических роликовых подшипников. Сзади к корпусу привода на шпильках укреплен корпус 34 лабиринтного уплотнения. В корпусе 34 выполнены цилиндрические расточки: в передней установлен маслоотражатель, две задние в сочетании с маслогонной резьбой шлицевого фланца 33 образуют двухступенчатое лабиринтное уплотнение.
Привод вентилятора осуществляется четырьмя последовательно связанными цилиндрическими прямозубыми колесами наружного зацепления 10, 11 и 13, установленными в полости, образованной передней крышкой 15 картера и крышкой 12.
Все зубчатые колеса привода вентилятора изготовлены из легированной стали и имеют зубчатые венцы и цапфы с осевыми отверстиями для облегчения. Каждое зубчатое колесо устанавливают на двух радиальных роликовых подшипниках. Внутренние кольца подшипников напрессованы на обработанные цилиндрические участки цапф зубчатых колес, наружные установлены в стальных обоймах, запрессованных в расточки гнезд крышек 12 и 15.
Цапфа ведущего зубчатого колеса имеет внутренние шлицы для соединения со шлицами рессоры 9. Ведомое зубчатое колесо имеет хвостовик для монтажа шлицевого фланца 14, который совместно с маслоотражателем и внутренним кольцом переднего роликового подшипника фиксируется на хвостовике специальной гайкой. Уплотнение выхода шлицевого фланца 14 вентилятора осуществляется маслоотражателем и двухступенчатым лабиринтным уплотнением.
Приводы агрегатов редуктора служат для обеспечения работы основных систем вертолета в случае отказа двигателей.
На крышке привода агрегатов, расположенной на левой стороне редуктора, установлены два датчика Д-2 счетчиков оборотов и гидравлический насос НШ-39М дублирующей гидросистемы. На отдельном фланце корпуса закреплен генератор переменного тока СГО-ЗОУ-4.
На крышке привода агрегатов, расположенной на правой стороне редуктора, установлены: воздушный компрессор АК-50ТЗ, гидравлический насос НШ-39М основной гидросистемы и дополнительный привод.
Привод агрегатов, установленных на корпусе редуктора, осуществляется от центрального зубчатого колеса с наружным зацеплением, установленного на шлицах вертикального вала редуктора.
Ведущее зубчатое колесо 1 (рис._6.4.)


приводов агрегатов приводит во вращение два цилиндрических зубчатых колеса 3 и 10, установленных на шлицах валиков конических зубчатых колес 7 и 8.
Цилиндрическое зубчатое колесо 3 через пару конических зубчатых колес 6 и 7 передает вращение на агрегаты, установленные с левой стороны редуктора, а зубчатое колесо 10 через пару конических зубчатых колес 8 и 9- на агрегаты, установленные на правой стороне редуктора.
Коническое зубчатое колесо 7 консольно установлено на конических роликовых подшипниках в стальном стакане 5. Между внутренними кольцами подшипников имеются распорная втулка и регулировочное кольцо 4, подбором толщины которого достигается предварительный натяг роликовых подшипников. Установленные детали на валике зубчатого колеса стянуты гайкой.
Хвостовик валика конического зубчатого колеса 7 имеет, наружные шлицы, на которые установлена шлицевая втулка 2 привода масляного агрегата редуктора. От осевого перемещения шлицевая втулка фиксируется разрезным стопорным кольцом. Стальной стакан 5 выполнен вместе с фланцем, которым он на шпильках закреплен в расточке горизонтальной перегородки корпуса редуктора. Под фланец стакана 5 установлено регулировочное кольцо, подбором толщины которого регулируется зазор в зацеплении зубчатых колес 6 и 7.
Между стенкой стакана и внутренней поверхностью расточки горизонтальной стенки корпуса редуктора образуется кольцевой канал для прохода масла на смазку деталей приводов.
Коническое зубчатое колесо 8 конструктивно выполнено аналогично коническому колесу 7 и смонтировано на шпильках в правой расточке горизонтальной перегородки корпуса редуктора.
Приводы агрегатов левой крышки 1 (рис._ 6.5.)


получают вращение от конического зубчатого колеса 2, на шлицевом хвостовике которого установлено и закреплено гайкой ведущее цилиндрическое колесо 10. От него вращение передается на зубчатое колесо.9 привода гидронасоса, от которого через двойное зубчатое колесо 5 и 8 приводятся во вращение зубчатые колеса б приводов датчиков счетчиков оборотов.
Коническое зубчатое колесо 2 установлено на двух конических роликовых подшипниках, наружные кольца которых запрессованы в расточках стакана 3, а внутренние кольца с распорной втулкой между ними, регулировочным кольцом и зубчатым колесом 10 затянуты на валике колеса гайкой. Стакан 3 зубчатого колеса 2 (см._рис._6.4.)

Рис. 6.4. Поперечный разрез нижней части редуктора ВР-8А
1- ведущее зубчатое колесо; 2- шлицевая втулка; 3,10- цилиндрические зубчатые колеса;4- регулировочное кольцо; 5- стакан; 6,7,8,9- конические зубчатые колеса
конструктивно выполнен аналогично стакану 5, установлен в горизонтальной расточке левого борта корпуса редуктора и с наружной стороны закреплен на шпильках.
Приводы агрегатов левого борта редуктора (см._рис._6.5.)

Рис. 6.5. Приводы агрегатов левой крышки редуктора:
1 - крышка привода; 2, 5, 6, 8, 9, 10 - зубчатые колеса приводов; 3, 12, 16 - стаканы; 4. 13, 19 - регулировочные кольца; 7-шпилька; 11, 14, 15-зубчатые кольца привода генератора; 17-корпус лабиринтного уплотнения; 18 - хомут крепления генератора
закрываются крышкой 1, отлитой из магниевого сплава и укрепленной на шпильках корпуса редуктора. Крышка имеет три фланца со шпильками для крепления агрегатов.
Зубчатое колесо 9 привода гидронасоса изготовлено совместно с пустотелым валиком, который установлен в расточках корпуса и крышки на двух шариковых подшипниках. На выводной части валика нарезаны шлицы для сочленения с валиком агрегата. Вывод привода гидронасоса через крышку 1 приводов левого борта имеет двухступенчатое лабиринтное уплотнение. Выводные части валиков приводов датчиков счетчиков оборотов внутри имеют отверстия квадратного сечения для сочленения с валиками датчиков счетчиков оборотов. Уплотнение выводных частей валиков выполнено торцовым, включающим в себя корпус с уплотнительными кольцами, уплотнительную втулку с пружиной и сальник.


Втулка несущего винта

Основной агрегат несущего винта; предназначается для крепления лопастей, передачи крутящего момента от вала главного редуктора к лопастям, а также для восприятия и передачи на фюзеляж аэродинамических сил, возникающих на лопастях несущего винта. Различают следующие типы В. н. в.: шарнирные, упругие и жёсткие.
В конструкции шарнирной втулки крепление лопастей к корпусу втулки осуществляется посредством горизонтальных, вертикальных и осевых шарниров. Горизонтальные шарниры обеспечивают возможность махового движения лопастей. Вертикальные шарниры позволяют лопастям совершать колебания в плоскости вращения (эти колебания возникают под действием переменных сил лобового сопротивления и сил Кориолиса, появляющихся при колебаниях лопасти относительно горизонтального шарнира). Благодаря шарнирному сочленению лопастей с корпусом втулки значительно снижаются переменные напряжения в элементах несущего винта и уменьшаются передающиеся от винта на фюзеляж вертолёта моменты аэродинамических сил. Осевые шарниры В. н. в. предназначены для изменения углов установки лопастей. В целях уменьшения свеса (изгиба) лопастей и создания необходимых зазоров между лопастями и хвостовой балкой вертолёта при невращающемся несущем винте и при малой частоте вращения несущего винта в конструкцию В. н. в. введены центробежные ограничители свеса.
Во всех шарнирах, в которых используются подшипники качения, предусматриваются системы смазки и уплотнений. В осевых шарнирах в качестве элементов, воспринимающих центробежные силы лопастей, применяются пластинчатые и проволочные торсионы, изготовленные из высокопрочной нержавеющей стали. Имеются так называемые эластомерные В. н. в., в шарнирах которых применяются цилиндрические, конические или сферические эластомерные подшипники. Эти подшипники выполнены из слоев стали и привулканизированных к ним слоев эластомера. Отсутствие трущихся металлических деталей уменьшает износ узлов. Конструкция В. н. в. упрощается, устраняется необходимость применения торсионов, сокращается время на техническое обслуживание, увеличивается надёжность конструкции. В конструкциях шарнирных В. н. в. с целью предотвращения явления «земного резонанса» колебания лопастей относительно вертикальных шарниров гасятся с помощью демпферов. которые в зависимости от используемого рабочего элемента подразделяются на фрикционные, гидравлические, пружинно-гидравлические и эластомерные. Шарнирные В. н. в. в зависимости от схемы могут быть трёх типов: с разнесёнными горизонтальными шарнирами (оси горизонтальных шарниров находятся на некотором расстоянии от оси несущего винта), с совмещёнными горизонтальными шарнирами (оси горизонтальных шарниров пересекаются на оси несущего винта), с совмещёнными горизонтальными и вертикальными шарнирами (оси обоих шарниров пересекаются в одной точке, отнесённой на некоторое расстояние от оси несущего винта).
Упругая втулка может быть выполнена с упругим элементом только в одном вертикальном или горизонтальном шарнире либо сразу в обоих шарнирах. Корпус упругой В. н. в. изготовляется, как правило, из композиционных материалов. За осевым шарниром, который может быть выполнен по схеме с подшипниками качения и торсионом или с эластомерными подшипниками, расположена внешняя упругая часть втулки, обеспечивающая маховые движения лопасти. На несущем винте с такой втулкой может быть значительно повышена эффективность управления по сравнению с шарнирной В. н. в., что способствует увеличению манёвренности вертолёта.
Жёсткая втулка имеет прочный центр, корпус (обычно из титанового сплава), прикреплённый к жёсткому приводному валу, и осевые шарниры, к корпусам которых через гребёнки прикреплены лопасти из композиционных материалов. В несущем винте с такой втулкой лопасть совершает колебательные движение в плоскости тяги и вращения не путём поворота в шарнирах, а благодаря большим деформациям лопасти или её более тонкого комлевого участка. Эти деформации оказываются допустимым и вследствие высокой прочности композиционных материалов. Такой винт с жесткой втулкой может рассматриваться подобным винту с шарнирной втулкой, имеющей большой разнос горизонтальных шарниров (10-35% от радиуса винта). Вертолёт с жёсткой В. н. в. обладает хорошими характеристиками управляемости. Важным преимуществом жёсткой В. н. в. является её простота (отсутствие высоконагруженных подшипников в шарнирах, демпферов и центробежных ограничителей свеса лопастей), облегчающая и удешевляющая изготовление винта и обслуживание его в эксплуатации.

  • - пустотелый цилиндр, служит для опоры вращающихся валов или устанавливается в колесах, холостых шкивах и в таких случаях вращается сама. Изготовляется из материала более мягкого, чем вал или ось. В. бывают...

    Сельскохозяйственный словарь-справочник

  • - Обитый войлоком или сукном деревянный щит, закрывавший окно изнутри по всей его площади...

    Архитектурный словарь

  • - отношение площади лопастей несущего винта в плане к сметаемой площади. Определяется приближённо по формуле = zb/R), где R - радиус винта, z - число лопастей, b - хорда лопасти на радиусе 0,7R...

    Энциклопедия техники

  • - площадь поверхности, описываемой лопастями несущего винта при их вращении. О. п. вычисляется как площадь круга с радиусом, равным радиусу несущего винта...

    Энциклопедия техники

  • - вид привода несущего винта вертолёта, при котором крутящий момент создается силой реакции газов, вытекающих из установленных на концах лопастей реактивных двигателей или реактивных сопел...

    Энциклопедия техники

  • - острый угол в плоскости симметрии вертолёта между осью вала несущего винта и перпендикуляром к строительной горизонтали аппарата...

    Энциклопедия техники

  • - цилиндрич. или конич. деталь машины с осевым отверстием, о к-рое входит сопрягаемая деталь...

    Большой энциклопедический политехнический словарь

  • - Bushing - .Направляющая деталь или вкладыш подшипника...

    Словарь металлургических терминов

  • - центральная часть всякого колеса с цилиндрическим отверстием, предназначенная для насаживания колеса на ось или вал. ...

    Морской словарь

  • - сменяемая деталь механизма, через к-рую проходят вал, стержень или поршень, имеющие вращательное или прямолинейное поступательно-возвратное движение, вследствие чего изнашивается В., а не крупная деталь...

    Технический железнодорожный словарь

  • - ".....

    Официальная терминология

  • - имеет несколько различных значений, из которых главное представляет трубку, помещаемую внутри вращающегося предмета для предохранения от истирания...

    Энциклопедический словарь Брокгауза и Евфрона

  • - деталь машины, механизма, прибора цилиндрической или конической формы, имеющая осевое отверстие, в которое входит другая деталь...

    Большая Советская энциклопедия

  • - деталь машины или устройства в виде полого цилиндра, в отверстие которого входит сопрягаемая деталь. Втулки бывают сплошные и разрезные...

    Большой энциклопедический словарь

  • - Искон. Суф. производное от втулить «заткнуть», преф. образования от тулить «закрывать» . См. притулиться...

    Этимологический словарь русского языка

  • - ВТУ́ЛКА, -и, жен. 1. Цилиндрическая или конической формы деталь машины с продольным отверстием для вставляемой другой детали. 2. Затычка, пробка...

    Толковый словарь Ожегова

"Втулка несущего винта" в книгах

Все от винта!

Из книги Как по лезвию автора Башлачев Александр Николаевич

Все от винта! Рука на плече. Печать на крыле. В казарме проблем - банный день. Промокла тетрадь. Я знаю, зачем иду по земле, Мне будет легко улетать. Без трех минут - бал восковых фигур. Без четверти - смерть. С семи драных шкур - шерсти клок. Как хочется жить. Не меньше, чем

От винта!

Из книги От винта! автора Маркуша Анатолий Маркович

От винта!

Теория воздушного винта

Из книги Жуковский автора Арлазоров Михаил Саулович

Теория воздушного винта Когда погас фейерверк юбилея, снова возвратились будни. Как и прежде, Жуковский ездит на занятия, читает лекции в Техническом училище и университете, отдает много сил своему любимому детищу - воздухоплавательному кружку.Еще не получив диплома об

Система узловых аэропортов («втулка и спицы»)

Из книги Продажа товаров и услуг по методу бережливого производства автора Вумек Джеймс

Система узловых аэропортов («втулка и спицы») Большинство из нас вынуждено пользоваться услугами традиционных авиакомпаний, использующих систему узловых аэропортов: American, United, Northwest, Delta, Continental, US Airways в США и British Airways – в Европе.Идея, лежащая в основе системы узловых

От винта

Из книги Знаковые бренды автора Соловьев Александр

От винта В 1916 году в северном пригороде Мюнхена Обервизенфельде объединились две небольшие фирмы, выпускавшие авиамоторы. Событие могло остаться незамеченным, если бы одну из этих фирм не возглавлял сын знаменитого конструктора Николауса Августа Отто, которому

История Прометея - ещё один путь мужчины, несущего свет

Из книги Дорога Домой автора

История Прометея - ещё один путь мужчины, несущего свет Вместе все двенадцать подвигов Геракла - это двенадцать ступеней, которые должен пройти человек, когда становится на путь служения. Это двенадцать Сил, которыми должен овладеть каждый герой, ЧТОБЫ СТАТЬ БОГОМ и

Высверливание винта рычага

Из книги Руководство слесаря по замкам автора Филипс Билл

Высверливание винта рычага Когда вы не в состоянии переместить кулачок привода, например когда есть сломанные или потерянные детали, может потребоваться высверлить винт рычага. Высверлив винт рычага, можно щупом попытаться переместить засов в открытое

Втулка

Из книги Большая энциклопедия техники автора Коллектив авторов

Втулка Втулка – цилиндрической (преимущественно) формы изделие, выполненное из различных марок стали, чугуна, сплавов и пластмасс высокой прочности; широко применяется в различных механизмах и приборах. Например, в приборе Роквелла устанавливается специальная

Втулка

Из книги Большая Советская Энциклопедия (ВТ) автора БСЭ

2. Срыв или износ резьбы винта щеки или винта средника.

Из книги Руководство по ремонту револьвера Наган 1895 автора Автор неизвестен

2. Срыв или износ резьбы винта щеки или винта средника. (I) Заменить

Конец эры винта

Из книги Me 262 последняя надежда Люфтваффе Часть 1 автора Иванов С. В.

Конец эры винта Когда в 1939 г. вспыхнула II мировая война, самолет уже был весьма важным фактором в бою. Со времен братьев Райт авиастроение прошло большой путь. Постепенно усовершенствовалась конструкция, появились новые технические решения, разработана оптимальная

Совершенствование воздушного винта

Из книги Британские асы пилоты «Спитфайров» Часть 1 автора Иванов С. В.

Совершенствование воздушного винта Первые «Спитфайры» имели двухлопастные деревянные воздушные винты; начиная с 78-го самолета на истребители стали ставить металлические трехлопастные винты фирмы де Хэвиленд, которые имели два положения установки шага лопастей.

Без винта

Из книги Продать и предать [Новейшая история российской армии] автора Воронов Владимир

Без винта Новейший ударный вертолет обещали армии пару десятилетий - то «Черную акулу» Ка-50, то «Ночной охотник» Ми-28Н, то «Аллигатор» Ка-52, а то и сразу все вместе. «Скоро… испытания завершены… не имеющий аналогов…» - твердили сменяющие друг друга главкомы ВВС,

История Прометея – ещё один путь мужчины, несущего свет

Из книги Древняя мудрость Руси. Сказки. Летописи. Былины автора Жикаренцев Владимир Васильевич

История Прометея – ещё один путь мужчины, несущего свет Геракл освободил Прометея, после того как совершил десять подвигов и стал Силой Жертвы.Прометей – про-мета. Мета - так называется цель, которая ставится всем существом и сердцем (см. ), а про - это приставка.

Устройство несущего основания

Из книги автора

Устройство несущего основания Небольшие размеры плиток мягкой черепицы обеспечивают легкий и практически безотходный монтаж. Легкость черепицы не требует усиленной конструкции стропильной системы, что позволяет не усиливать несущую конструкцию даже тогда, когда речь

Изобретение относится к области авиации, более конкретно - к втулкам несущих винтов. Втулка несущего винта состоит из звезды, прикрепленных к ней рукавов, состоящих из оси рукава, распорных втулок, резинового демпфера, опорных подшипников и вилки с поводком и лопастью. Звезда опирается на приводной вал при помощи сферического шарнира, а крутящий момент к рукавам передается при помощи водила, состоящего из верхнего и нижнего корпусов, профилированных пластин и цапф. Втулка выполнена с совмещенным горизонтальным шарниром, с возможностью реализовывать расчетные вынос оси рукава от оси вращения винта, угол конусности несущего винта и вертикальный вынос совмещенного горизонтального шарнира относительно вершины конуса несущего винта. Втулка может быть модернизирована для несущего винта с любым количеством лопастей изменением числа лучей звезды и профиля пластин. Изобретение направлено на создание втулки несущего винта с любым количеством лопастей. 2 ил.

Рисунки к патенту РФ 2363620

Использование: для крепления лопастей несущего винта к приводящему валу.

Сущность: втулка несущего винта представляет собой узел, состоящий из водила и звезды с прикрепленными к ней рукавами. Водило состоит из верхнего и нижнего корпусов, профилированных пластин и цапф для опоры резиновых демпферов. Водило служит для передачи крутящего момента приводящего вала на звезду с рукавами и лопастями, а также для передачи подъемной силы и управляющих моментов с несущего винта на приводной вал. Рукав состоит из вилки, которая через радиальный и упорный подшипник насажена на ось, на которой установлен резиновый демпфер. Положение демпфера задается распорными втулками. Рукав вкручен в звезду, опирающуюся сферическим подшипником на приводной вал. К вилкам втулки прикреплены поводки, с помощью которых задается угол установки вилок с прикрепленными к ним лопастями. Эта втулка несущего винта предназначена для использования на беспилотных вертолетах, эксплуатация которых не предполагает перевернутого полета. Данная втулка несущего винта может быть модернизирована для несущего винта с любым количеством лопастей изменением числа лучей звезды и профиля пластин. Жесткость демпфера может быть изменены либо его конфигурацией, либо использованием для его изготовления резины другого состава.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Втулка несущего винта

Изобретение относится к втулкам несущих винтов с совмещенным горизонтальным шарниром и может быть использовано на беспилотных вертолетах.

Известна установка, патент RU 2061626 С1, кл. 6 В64С 27/605, содержащая несущий винт с жестко установленными (присутствует только осевой шарнир) в закрепленной на валу втулке лопастями. Конструкция дает возможность применять ее для многолопастных винтов. При применении на беспилотном вертолете для телевизионной съемки к недостаткам втулки несущего винта, входящей в состав описываемой системы, может быть отнесена ее высокая жесткость, что приводит к высокой скорости реакций, т.е. рывкам и тряске. Кроме того, отсутствие угла между продольной осью рукава и плоскостью вращения и отсутствие выноса рукава от оси вращения вала вызывает высокие изгибающие моменты лопастей несущего винта и, как следствие, их малый ресурс.

Известна установка, патент RU 2235662 С2, В64С 27/48, содержащая вращающийся наружный корпус с зубчатым колесом предварительной раскрутки, соединенный с невращающимся внутренним валом, внутри которого расположен рычажный механизм управления, осуществляющий наклон оси и перемещение в вертикальном направлении соединенного с ним коромысла. Коромысло установлено на рычажный механизм управления и соединено с каждой из лопастей через скобу с осевым шарниром. Последний выполнен в виде пальца и расположен в корпусе качалки под конструктивным углом конусности к плоскости вращения втулки. На консольные части каждого пальца установлена скоба и опора с упорным подшипником, имеющие возможность поворота относительно оси пальца. Скоба соединена с опорой с упорным подшипником, через который центробежная сила с лопасти передается на корпус качалки. Корпус качалки шарнирно соединен с вращающимся наружным корпусом втулки через карданную рамку, расположенную над корпусом качалки. Оси рамки взаимно перпендикулярны, а точка пересечения их осей лежит на оси вращения втулки. Ось рамки, параллельная оси лопастей, является осью общего осевого шарнира, относительно которого отклоняется корпус качалки при отклонении коромысла, а ось рамки, перпендикулярная оси лопастей, совмещена с осью, соединяющей коромысло с рычагами поворота лопастей на одном из углов установки лопастей, и является осью общего горизонтального шарнира. Рычажный механизм управления имеет три раздельные тяги. К недостаткам втулки несущего винта, входящей в состав описываемой системы, может быть отнесена ее технологическая сложность, отсутствие возможности управления общим шагом винта, а также возможность использовать такую конструкцию только для двухлопастных винтов. Втулка несущего винта этой установки аналогична конструкции данного изобретения и по совокупности существенных признаков и технической сущности наиболее близка к данному изобретению и выбрана поэтому в качестве прототипа.

В настоящем изобретении конструкция втулки позволяет совместное перемещение звезды с рукавами втулки относительно сферического шарнира, надетого на приводящий вал и вынесенного на расчетную высоту относительно вершины конуса, по которой движутся лопасти во время вращения винта. Крутящий момент на систему лопастей с приводящего вала передает водило. Водило жестко крепится к приводящему валу верхним и нижним корпусами, на которых установлены профилированные пластины, удерживающие цапфы для опоры резиновых демпферов. Перемещение звезды с рукавами и лопастями не является свободным и сталкивается с противодействием деформирующихся резиновых демпферов. Данная втулка несущего винта может быть модернизирована для несущего винта с любым количеством лопастей изменением числа лучей звезды и профиля пластин, а также с возможностью реализовать расчетные вынос оси рукава от оси вращения винта, угол конусности несущего винта и вертикальный вынос совмещенного горизонтального шарнира относительно вершины конуса несущего винта.

Таким образом, по сравнению с ближайшим аналогом данное изобретение обладает новизной, причем совокупность отличительных признаков не следует явным для специалиста образом из источников, соответствующих уровню современной техники. Что касатеся промышленной применимости, то она доказывается приведенным ниже описанием и применением настоящего изобретения в одном из проектов автора. Следовательно, данное изобретение соответствует всем трем условиям патентоспособности.

На фиг.1 приведена схема втулки несущего винта, являющейся предметом настоящего изобретения. Лопасти несущего винта условно не показаны. На фиг.2 показана схема сборки втулки несущего винта.

Позиции на фиг.1 и 2 означают: 1 - сферический шарнир, 2 - звезда, 3 - ось рукава, 4 - втулка распорная, 5 - втулка распорная, 6 - резиновый демпфер, 7 - подшипник радиальный, 8 - вилка, 9 - подшипник упорный, 10 - верхний корпус, 11 - профилированная пластина, 12 - цапфа, 13 - нижний корпус, 14 - поводок, 15 - сферическая опора.

Втулка несущего винта имеет звезду 2, которая опирается на приводящий вал сферическим шарниром 1. В лучи звезды вкручиваются оси рукавов, на каждой из которых собраны: распорные втулки 4 и 5, резиновый демпфер 6, радиальный подшипник 7, упорный подшипник 9 и вилка 8. Крутящий момент от приводящего вала к рукавам передает водило, которое состоит из верхнего 10 и нижнего 13 корпусов, профилированных пластин 11 и цапф 12. Местом передачи крутящего момента является пятно контакта резинового демпфера с цапфой. Изменение угла установки лопасти производится поворотом вилки за поводок 14, к которому крепятся тяги, идущие от автомата перекоса.

Втулка несущего винта работает следующим образом. Циклические изменения углов установки лопастей во время вращения несущего винта приводят к возникновению моментов, которые пытаются опустить одну часть винта и поднять противоположную, при этом винт до момента полного обжатия демпфера 6 может двигаться относительно сферического шарнира, надетого на вал винта, наращивая передаваемый момент постепенно. Это обеспечивает, во-первых, нежесткий характер управления вертолетом, а во-вторых, меньшие нагрузки на комлевые части лопастей. Конструкция дает возможность предусмотреть расчетные углы установки рукавов относительно плоскости вращения винта и вынос относительно оси вращения винта, что позволяет значительно снизить переменные нагрузки на комлевые части лопастей. Используя демпферы различной формы или сортов резины можно подбирать характеристики несущего винта для типовых условий полета, привычек или возможностей оператора, эксплуатационных допущений бортовой аппаратуры.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Втулка несущего винта, состоящая из звезды, прикрепленных к ней рукавов, состоящих из оси рукава, распорных втулок, резинового демпфера, опорных подшипников и вилки с поводком и лопастью, отличающаяся тем, что звезда опирается на приводной вал при помощи сферического шарнира, а крутящий момент к рукавам передается при помощи водила, состоящего из верхнего и нижнего корпусов, профилированных пластин и цапф, при этом втулка выполнена с совмещенным горизонтальным шарниром, с возможностью реализовывать расчетные вынос оси рукава от оси вращения винта, угол конусности несущего винта и вертикальный вынос совмещенного горизонтального шарнира относительно вершины конуса несущего винта и может быть модернизирована для несущего винта с любым количеством лопастей изменением числа лучей звезды и профиля пластин.

Можно без преувеличения сказать, что главное в планёре-автожире -это несущий винт. От правильности его профиля, от массы, точности центровки и прочности зависят лётные качества автожира. Правда, безмоторный аппарат на буксире за автомобилем поднимается всего на 20 – 30 м. Но и полёт на такой высоте требует обязательного соблюдения всех ранее высказанных условий.

Лопасть (рис. 1) состоит из главного, воспринимающего все нагрузки элемента – лонжерона, нервюр (рис. 2), промежутки между которыми заполнены пластинами из пенопласта, и задней кромки, изготовляемой из прямослойной сосновой рейки. Все эти части лопасти склеиваются синтетической смолой и после надлежащего профилирования оклеиваются стеклотканью для придания дополнительной прочности и герметичности.

Материалы для лопасти: авиационная фанера толщиной 1 мм, стеклоткань толщиной 0,3 и 0,1 мм, эпоксидная смола ЭД-5 и пенопласт ПС-1. Смола пластифицируется дибутилфталатом в количестве 10 – 15%. Отвердителем служит полиэтиленполиамин (10%).

Изготовление лонжерона, сборка лопастей и их последующая обработка производятся на стапеле, который должен быть достаточно жёстким и иметь прямолинейную горизонтальную поверхность, а также одну из вертикальных кромок (их прямолинейность обеспечивается строжкой под линейку типа лекальной, не менее 1 м длиной).

Стапель (рис. 3) делают из сухих досок. К вертикальной продольной кромке (прямолинейность которой обеспечена) на время сборки и склейки лонжерона крепятся винтами металлические установочные пластинки на расстоянии 400 – 500 мм друг от друга. Верхний край их должен возвышаться над горизонтальной поверхностью на 22 - 22,5 мм.

1 – лонжерон (фанера, склеенная со стеклотканью); 2 – накладка (дуб или ясень); 3 – задняя кромка (сосна или липа); 4 – планка (сосна или липа); 5 – заполнитель (пенопласт); 6 – обшивка (2 слоя стеклоткани s0,1); 7 – триммер (дюралюминий марки Д-16М s,2 шт.); 8 – нервюра (фанера s2, слой вдоль)

Для каждой лопасти следует заготовить 17 полос фанеры, раскроенных по чертежу лонжерона наружным слоем вдоль, с припусками на обработку по 2 – 4 мм на сторону. Поскольку размеры листа фанеры 1500 мм, в каждом слое неизбежна склейка полос на ус не менее чем 1:10, а стыки в одном слоедолжны отстоять от стыков в другом, следующем за ним на расстоянии 100 мм. Отрезки фанеры располагаются так, что первые стыки нижнего и верхнего слоёв отстоят от комлевого торца лонжерона на 1500 мм, второго и предпоследнего слоёв – на 1400 мм и т. д., а стык среднего слоя будет на расстоянии 700 мм от торца комлевой части лопасти. Соответственно будут распределяться вдоль лонжерона вторые и третьи стыки заготовляемых полос.

Кроме того, нужно иметь 16 полос стеклоткани толщиной 0,3 мм и размерами 95×3120 мм каждая. Предварительно они должны подвергнуться обработке для удаления замасливателя.

Склеивать лопасти нужно в сухом помещении при температуре 18 – 20°С.

ИЗГОТОВЛЕНИЕ ЛОНЖЕРОНА

Перед сборкой заготовок стапель выстилается калькой, чтобы к нему не прилипали заготовки. Затем укладывается и выравнивается относительно установочных пластин первый слой фанеры. Его прикрепляют к стапелю тонкими и короткими гвоздями (4-5 мм), которые вбивают у комля и у конца лопасти, а также по одному с каждой стороны стыков для предотвращения смещения отрезков фанеры по смоле и стеклоткани в процессе сборки. Поскольку они останутся в слоях, их вколачивают вразброс. Гвозди вбивают указанным порядком и для закрепления всех последующих слоёв. Они должны быть из достаточно мягкого металла, чтобы не повреждать режущие кромки инструмента, употребляемого для дальнейшей обработки лонжерона.

Слои фанеры обильно смачивают при помощи ролика или кисти смолой ЭД-5. Затем последовательно накладывают на фанеру полосу стеклоткани, которую разглаживают рукой и деревянной гладилкой, пока на её поверхности не покажется смола. После этого на ткань кладут слой фанеры, у которого сначала смазывают смолой ту сторону, которая ляжет на стеклоткань. Набранный таким образом лонжерон покрывают калькой, укладывают на него рейку размерами 3100x90x40 мм. Между рейкой и стапелем струбцинами, расположенными на расстоянии 250 мм друг от друга, по всей длине рейки производят обжатие набранного пакета, пока его толщина не сравняется с верхними кромками установочных пластин. Излишки смолы надо удалить до её затвердения.

Заготовка лонжерона снимается со стапеля через 2-3 суток и обрабатывается до ширины 70 мм в профильной части, 90 мм – в комлевой, а также длины между торцами – 3100 мм. Необходимое требование, которое следует соблюсти на этом этапе, – обеспечение прямолинейности поверхности лонжерона, образующей в процессе дальнейшего профилирования переднюю кромку лопасти. Поверхность, к которой будут приклеиваться нервюры и заполнитель из пенопласта, должна быть также достаточно прямолинейной. Обрабатывать её следует рубанком и обязательно с ножом из твёрдых сплавов или в крайнем случае драчёвыми напильниками. Все четыре продольные поверхности заготовки лонжерона должны быть взаимно перпендикулярными.

ПРЕДВАРИТЕЛЬНОЕ ПРОФИЛИРОВАНИЕ

Разметку заготовки лонжерона производят так. Её кладут на стапель и на концевом торце, передней и задней плоскостях наносят линии, отстоящие от поверхности стапеля на расстоянии 8 мм (~Ун мах). На концевом торце, кроме того, вычерчивают с помощью шаблона (рис. 4) полный профиль лопасти в масштабе 1:1. Особой точности при изготовлении этого вспомогательного шаблона не требуется. С наружной стороны шаблона наносят линию хорды и на ней у носка профиля и в точке на расстоянии 65 мм от него сверлят два отверстия диаметром 6 мм. Глядя сквозь отверстия, совмещают линию хорды шаблона с линией, проведённой на концевом торце лонжерона, чтобы нанести на нём линию, определяющую границу профилирования. Во избежание сдвигов шаблон крепится к торцу тонкими гвоздями, под которые в нём сверлятся произвольно расположенные по их диаметру отверстия.

Обработку лонжеронов по профилю производят простым рубанком (грубая) и плоским драчёвым напильником. В продольном направлении её контролируют линейкой. Завершив обработку, приклеивают нервюры к задней поверхности лонжерона. Точность их установки обеспечивается тем, что на них в ходе изготовления наносят линию хорды, которая совмещается с линией хорды, нанесённой на задней плоскости заготовки лонжерона, а также визуальной проверкой прямолинейности их расположения относительно вспомогательного шаблона. Его снова крепят для этой цели к концевому торцу. Нервюры располагают на расстоянии 250 мм друг от друга, причём первая выставляется в самом начале профиля лонжерона или на расстоянии 650 мм от торца комлевой его части.

СБОРКА И ОБРАБОТКА ЛОПАСТИ

После затвердения смолы между нервюрами вклеиваются пластины пенопласта, соответствующие профилю задней части лопасти, по выступающим концам нервюр делают пропилы в рейке образующей заднюю кромку. Последнюю приклеивают на

смоле к нервюрам и пластинам из пенопласта.

Далее производят черновую обработку пенопластовых пластин, кривизна которых подгоняется под кривизну нервюр, а также удаляют излишек древесины с рейки для образования задней кромки с некоторым припуском для последующей точной обработки по основному шаблону (рис. 5).

Основой шаблон изготовляется вначале с припуском, 0,2 – 0,25 мм на указанные в шаблоне величины Ув и Ун, чтобы получить профиль меньшего, чем окончательный, размера под оклейку стеклотканью.

При обработке лопасти с помощью основного шаблона за базу берётся её нижняя поверхность. С этой целью выверяется лекальной линейкой прямолинейность её образующей на расстоянии Хн= 71,8 мм, где Ун= 8,1 мм. Прямолинейность можно считать достаточной в том случае, если в середине линейки длиной в 1 м имеется зазор не более 0,2 мм.

Затем к длинным сторонам хорошо отрихтованной дюралюминиевой пластины размерами 500x226x6 мм крепятся направляющие рейки из твёрдого дерева или дюралюминия высотой 8,1 мм. Расстояние между ними для верхней половины основного шаблона должно быть равно ширине лопасти, или 180 мм. Последнюю укладывают на стапеле на 3 – 4 подкладках, толщина которых равна толщине плиты приспособления, и прижимают струбцинами. Благодаря этому от-рихтованная пластина может передвигаться между стапелем и нижней поверхностью лопасти по всей длине в прямолинейной плоскости, чем обеспечивается постоянство толщины лопасти и соответствие её поверхности заданному профилю.

Верхнюю поверхность лопасти можно считать обработанной, если верхняя половина шаблона перемещается по всей её длине без зазора по профилю и в местах соприкосновения шаблона с направляющими. Нижнюю поверхность лопасти проверяют полностью собранным шаблоном, обе половины которого жёстко соединены вместе. Верхнюю и нижнюю поверхности профилируют с помощью драчёвых напильников с грубой и средней насечкой, а впадины и неровности заделывают по шаблону шпаклёвкой из смолы ЭД-5, смешанной с древесной мукой, и снова опиливают по шаблону.

ОКЛЕЙКА ЛОПАСТИ

Следующей операцией является оклейка профильных и комлевых частей лопастей стеклотканью толщиной 0,1 мм в два слоя на смоле ЭД-5. Каждый слой представляет собой сплошную ленту стеклоткани, который накладывается своей серединой на переднюю кромку лопасти. Основное требование, которое необходимо соблюдать при этом, – излишки смолы после того, как ткань хорошо ею пропитается, должны быть тщательно выжаты с помощью деревянной гладилки в поперечном направлении от передней кромки к задней, чтобы под тканью не образовались воздушные пузыри. Ткань нигде не должна подворачиваться или морщиться во избежание ненужных утолщений.

Оклеив лопасти, их зачищают наждачной бумагой, а заднюю кромку доводят до толщины, близкой к окончательной. Проверяют также профиль носка лонжерона. Пока это делают с помощью основного шаблона с некоторыми припусками, как указывалось выше, чтобы убедиться в качественности профилирования верхней и нижней поверхностей.

Основной шаблон доводят до требуемого размера и с его помощью производят окончательную подгонку профиля с применением шпаклёвки, причём за основу опять берётся нижняя поверхность лопасти, для чего с помощью лекальной линейки снова проверяется прямолинейность её образующей на расстоянии Хн= 71,8 мм от носка. Убедившись в её прямолинейности, лопасть кладут на стапель нижней поверхностью вниз на подкладках высотой 42 мм (эта величина представляет собой округлённую разницу между высотой нижней половины шаблона и Ун= 8,1 мм). Одна из подкладок ложится под комлевую часть лопасти, которая в этом месте прижимается к стапелю струбциной, остальные вдоль лопасти на произвольных расстояниях друг от друга. После этого верхняя поверхность лопасти промывается ацетоном или растворителем и покрывается по всей длине тонким слоем шпаклёвки из смолы ЭД-5 и зубного порошка такой густоты, чтобы она легко распределялась на поверхности и не стекала по кривизне профиля (консистенция густой сметаны). Прочно скреплённый основной шаблон медленно и равномерно продвигается вдоль лопасти фаской вперёд по движению так, чтобы его кромка всё время опиралась на горизонтальную поверхность стапеля. Снимая излишнюю шпаклёвку на выпуклых местах профиля и оставляя нужное её количество во впадинах, шаблон обеспечивает таким образом доводку профиля. Если окажется, что впадины в некоторых местах не заполнились, то эта операция повторяется после нанесения на них более толстого слоя шпаклёвки. Излишняя шпаклёвка должна периодически удаляться, когда она начинает свисать с передней и задней кромок лопасти.

При выполнении этой операции важно перемещать шаблон без перекосов и перпендикулярно к продольной оси лопасти, двигая его безостановочно, чтобы избежать неровностей поверхности лопасти. Дав шпаклёвке достигнуть полной твёрдости и сгладив её слегка наждачной бумагой, операцию окончательной шпаклёвки повторяют на нижней поверхности, пользуясь подкладками высотой 37 мм.

ОТДЕЛКА ЛОПАСТЕЙ

Сделав лопасти, их обрабатывают наждачной бумагой средней зернистости, обращая особое внимание на формирование носка профиля, промывают ацетоном или растворителем и покрывают грунтом № 138, кроме места крепления триммера (рис. 6). Затем все неровности заделывают нитрошпаклёвкой, следя, чтобы на профилированных поверхностях не образовалось излишних утолщений.

Окончательные отделочные работы, состоящие в осторожном снятии водоупорной наждачной бумагой разной зернистости излишков шпаклёвки, проводят, сообразуясь с продвижением сомкнутого шаблона вдоль поверхностей лопасти без излишней качки и зазоров (не более 0,1 мм).

После оклейки лопастей стеклотканью толщиной 0,1 мм и до их покрытия грунтом на комлевую часть лопастей сверху и снизу на смоле ЭД-5 приклеивают пластины из дуба или ясеня размерами 400x90x6 мм, которые состругиваются так, чтобы лопасти приобрели установочный угол, заключённый между хордой и горизонтальной плоскостью и равный 3°. Его проверяют с помощью несложного шаблона (рис. 7) относительно передней поверхности комля, а также контролируя параллельность образующихся при этом поверхностей снизу и сверху комля.

На этом заканчивается формирование комля лопасти, и он обклеивается стеклотканью 0.3 мм на смоле ЭД-5 для придания лопасти герметичности. Готовая лопасть, кроме комля, окрашивается нитроэмалью и полируется.

Советы относительно определения фактического положения центра тяжести лопастей, их балансировки и сопряжения со втулкой читайте в следующих номерах журнала.

СБОРКА И РЕГУЛИРОВКА

В предыдущем номере журнала был подробно описан технологический процесс изготовления лопастей несущего винта автожира.

Следующим этапом является балансировка лопастей по хорде, сборка и балансировка несущего винта по радиусу лопастей. От точности установки последних зависит плавность работы несущего винта, в противном случае будут возникать повышенные нежелательные вибрации. Поэтому к сборке надо отнестись очень серьёзно – не спешить, не начинать работу, пока не будет подобран весь необходимый инструмент, приспособления и не подготовлено рабочее место. При балансировке и сборке надо постоянно контролировать свои действия – лучше семь раз отмерить, чем один раз упасть хотя бы с малой высоты.

Процесс балансировки лопастей по хорде в данном случае сводится к определению положения центра тяжести элемента лопасти.

Основная цель, вызывающая необходимость балансировки лопасти по хорде, – уменьшить тенденцию к возникновению колебаний флаттерного типа. Хотя у описываемой машины возникновение этих колебаний маловероятно, однако помнить о них нужно, и при регулировке следует приложить все усилия для того, чтобы ЦТ лопасти находился в пределах 20 – 24% хорды от носика профиля. Профиль лопасти NACA-23012 имеет очень малое перемещение центра давления (ЦД – точка приложения всех аэродинамических сил, действующих на лопасть в полёте), который находится в тех же пределах, что и ЦТ. Это позволяет совместить линии ЦТ и ЦД, что практически означает отсутствие пары сил, вызывающих закручивание лопасти несущего винта.

Предлагаемая конструкция лопасти обеспечивает требуемое положение ЦТ и ЦД при условии изготовления их строго по чертежу. Но даже при самом тщательном подборе материалов, соблюдении технологии весовое несоответствие может возникнуть, в связи с чем и выполняются балансировочные работы.

Определить (с некоторыми допустимыми погрешностями) положение ЦТ изготовленной лопасти можно, выполнив лопасти с припуском на концах 50- 100 мм. После окончательной опиловки припуск отрезается, на лопасть ставится законцовка, а отрезанный элемент подвергается балансировке.

1 – ограничитель углов (Д16Т); 2 – ось несущего винта (30ХГСА); 3 – нижняя пластина втулки (Д16Т, s6); 4 – ферма втулки (Д16Т); 5 – ось главного шарнира (30ХГСА); 6 – втулка (бронза оловянистая); 7 – шайба Ø20 – 10, 5 – 0,2 (сталь 45); 8 – корпус подшипников (Д16Т); 9 – отверстие под шплинт; 10 – крышка корпуса подшипн. (Д16Т); 11 – корончатая гайка М18; 12 – шайба Ø26 – 18, 5 – 2 (сталь 20); 13 - винт крепления крышки М4; 14 – радиально-упорный подшипник; 15 – радиально-сферический подшипник № 61204; 16 – болт крепления лопасти (30ХГСА); 17 – накладка лопасти (s3, 30ХГСА); 18 – шайба Ø14 – 10 – 1,5 (сталь 20); 19 – самоконтрящаяся гайка М10; 20 – винт М8; 21 – буж (Ø61, L = 200, Д16Т); 22 – пилон (труба Ø65×2, L=1375, липа)

На трёхгранную, горизонтально расположенную призму своей нижней поверхностью кладут элемент лопасти (рис. 1). Его плоскость сечения по хорде должна быть строго перпендикулярна ребру призмы. Передвижением элемента лопасти вдоль хорды добиваются его равновесия и замеряют расстояние на носке профиля до ребра призмы. Это расстояние должно составлять 20 – 24% от длины хорды. Если ЦТ выйдет за этот максимальный предел, на носик профиля в концевой части лопасти надо будет навесить противофлаттерный груз такого веса, чтобы ЦТ сместился вперёд на необходимую величину.

Комель лопасти усилен накладками, которые представляют собой стальные пластины толщиной 3 мм (рис. 2). Они крепятся к комлю лопасти пистонами диаметром 8 мм и заклёпками впотай на каком-либо клее: БФ-2, ПУ-2, ЭД-5 или ЭД-6. Перед установкой накладок комель лопасти зачищается грубой наждачной бумагой, а сама накладка обрабатывается пескоструйным аппаратом. Склеиваемые поверхности деталей, то есть комель лопасти, накладки, отверстия под пистоны и сами пистоны, обезжиривают и тщательно смазывают клеем. Затем расклёпывают пистоны и ставят заклёпки (по 4 штуки на каждую накладку). После этой операции лопасти готовы к разметке для установки их на втулку.

Несущий винт автожира (рис. 3) состоит из двух лопастей, втулки, оси винта с подшипниками качения, корпуса подшипников горизонтального шарнира и ограничителя углов отклонения оси несущего винта.

Втулка состоит из двух деталей: П-образной фермы и нижней пластины (рис. 4). Ферму желательно делать из поковки. При изготовлении её из проката надо обратить особое внимание на то, чтобы направление проката было обязательно параллельно продольной оси фермы. Такое же направпение проката должно быть и на нижней пластинке, которая делается из листа дюралюминия марки Д16Т толщиной 6 мм.

Обработка фермы ведётся по операции в следующем порядке: сначала фрезеруют заготовку, оставляя припуск по 1,5 мм на сторону, затем ферму подвергают термической обработке (закалке и старению), после чего производится окончательная фрезеровка согласно чертежу (см. рис. 4). Потом шабером и наждачной бумагой на ферме выводятся все поперечные риски и наносится продольный штрих.

Ось (рис. 5) крепится на пилоне на двух взаимно перпендикулярных осях, которые позволяют ей отклоняться от вертикали на заданные углы.

На верхнюю часть оси насажены два подшипника качения: нижний -радиальный № 61204, верхний -радиально-упорный № 36204. Подшипники заключены в корпус (рис. 6), который своим нижним внутренним бортиком воспринимает в полёте всю нагрузку от веса автожира. При изготовлении корпуса надо обратить особое внимание на обработку сопряжения бортика с цилиндрической частью. Подрезы и риски в месте сопряжения недопустимы. В верхней части корпус подшипников имеет два ушка, в которые запрессованы бронзовые втулки. Отверстия во втулках обрабатываются развёртками после их запрессовки. Ось втулок должна проходить через ось вращения корпуса строго перпендикулярно ей. Сквозь отверстия в ушках корпуса подшипников и втулки, которые запрессованы в щёки фермы, проходит болт (рис. 7), являющийся горизонтальным шарниром несущего винта автожира, относительно оси которого лопасти совершают маховые движения.

Введение….4
1 Анализ конструкций втулок несущих винтов вертолетов….…5
1.1 Актуальность проблем, связанных с обслуживанием трехшарнирной втулки несущего винта вертолета…5
1.2 Типы втулок несущего винта вертолета…7
1.3 Особенности использования эластомерных подшипников….…11
1.4 Сравнение втулки с эластомерным подшипником со втулкой с шарнирным креплением лопастей….14
2 Расчет втулки НВ с металлофторопластовым подшипником и бесшарнирной втулки НВ….20
2.1 Физическая картина нагружения несущего винта….20
2.2 Эксплуатационные и расчетные нагрузки….23
2.3 Выбор и расчет втулки несущего винта ….…26
3 Разработка технологических карт обслуживания бесшарнирной втулки несущего винта вертолета Ми-8….49
3.1 Стратегии технического обслуживания и ремонта авиационной техники.49
3.2 Обслуживание шарнирной втулки несущего винта вертолета Ми-8….….55
3.3 Разработка технологии обслуживания бесшарнирной втулки несущего винта на основе анализа эксплуатации втулки несущего винта вертолета BK-117….75
4 Безопасность полетов в сложных географических и температурных условиях…80
4.1 Безопасность полетов вертолетов….….80
4.2 Влияние на безопасность полетов эксплуатации в условиях высоких и низких температур наружного воздуха….…81
4.3 Анализ характерных авиационных происшествий, связанных с ошибками и нарушениями экипажа при заходе на посадку в сложных метеорологических условиях…84
5 Расчет и сравнение экономических затрат от внедрения бесшарнирной втулки несущего винта…89
5.3 Расчет эксплуатационных затрат на обслуживание шарнирной втулки несущего винта вертолета Ми-8….…90
5.4 Расчет эксплуатационных затрат на обслуживание бесшарнирной втулки несущего винта вертолета Ми-8 и сравнение полученных затрат с затратами на обслуживание шарнирной втулки несущего винта ….….93
6 Обеспечение безопасности при замене втулки несущего винта на вертолете Ми-8….….…95
6.1 Введение….….….….95
6.2 Работы по замене втулки несущего винта….….…96
6.3 Анализ и оценка безопасности при замене втулки несущего винта на вертолете Ми-8….….98
6.4 Разработка необходимых мероприятий для обеспечения безопасности при замене втулки несущего винта на вертолете Ми-8….….101
Заключение….….105
Список литературы….….106

Дипломная работа:
АНАЛИЗ И РАЗРАБОТКА МЕРОПРИЯТИЙ ПО ПОВЫШЕНИЮ ЭФФЕКТИВНОСТИ ДЕЯТЕЛЬНОСТИ ПРЕДПРИЯТИЯ ЭЛЕКТРОСВЯЗИ

Дипломная работа:
Технико-экономическое обоснование мероприятий по повышению эффективности деятельности транспортного хозяйства

Введение (выдержка)

Один из самых нагруженных элементов конструкции вертолета в процессе эксплуатации – несущая система вертолета, основным агрегатом которой является втулка несущего винта. Втулка несущего винта с шарнирным креплением лопастей за годы эксплуатации зарекомендовала себя как весьма надежный элемент конструкции несущей системы вертолета. Однако, из-за обилия деталей, мест смазки и объектов осмотра, обслуживание такой втулки весьма трудоемко и осуществляется по наработке, то есть через определенное количество часов налета. Такая стратегия эксплуатации не всегда оправдана, так как замена элемента зачастую осуществляется до достижения им предотказного состояния.
Мировой опыт вертолетостроения показал, что при использовании других технологических решений по исполнению втулки несущего винта, таких как бесшарнирная втулка и втулка с металлофторопластовым подшипником и торсионом, эксплуатация может осуществляться более эффективно.
Рассмотренные в ВКР варианты реализации бесшарнирной втулки несущего винта и втулки несущего винта с металлофторопластовым подшипником на вертолете Ми-8 позволят оценить возможность повышения эффективности технической эксплуатации втулки несущего винта.

Основная часть (выдержка)

1 Анализ конструкций втулок несущих винтов вертолетов
1.1 Актуальность проблем, связанных с обслуживанием трехшарнирной втулки несущего винта вертолета
Из опыта эксплуатации вертолетов с классической схемой втулки несущего винта известно, что данный тип втулок имеет ряд недостатков. Основным видом регламентных работ по несущему винту с классической схемой является регулярное пополнение и периодическая замена смазки в шарнирных сочленениях его втулки. Подшипники шарниров втулки работают постоянно под действием переменных и значительных по своей величине нагрузок. Для обеспечения смазки трущихся поверхностей этих шарниров (горизонтального, вертикального и осевого) применяются специальные масла.
Масло в определенном количестве заливается в полости указанных шарниров через воронку или специальным штоковым шприцем.
По мере наработки несущим винтом определенного числа часов масло загрязняется, и его смазывающие качества ухудшаются. Поэтому регламентом технического обслуживания предусматривается периодическая замена масла.
Несоблюдение сроков замены масла приводит к преждевременному износу опорных поверхностей подшипников и выходу их из строя. К таким же последствиям приводит и применение сортов масла, не предусмотренных для смазки подшипников.
Практика показывает, что игольчатые подшипники наиболее долговечно работают при смазке их специальным гипоидным маслом, а шариковые подшипники - при смазке моторным маслом .
Общую тенденцию процесса развития разработки и конструирования втулок несущих винтов вертолетов не так просто последовательно проследить, поскольку каждая конкретная вертолетная фирма, как правило, применяет втулки определенной конструкции.
Однако, можно отметить возрастающую сложность конструкции втулокнесущих винтов с шарнирным креплением лопастей при одновременном улучшении их весовых характеристик, надежности и усталостной прочности, что достигается более тщательной проработкой, деталей конструкции с учетом более глубокого понимания условий работы несущего винта.
В последнее время большой интерес проявляется к упрощенной конструкции втулки несущего винта, в которой шарниры заменяются упругими элементами. Существует несколько путей достижения этой цели, отличающиеся своими принципиальными и конструктивными особенностями у различных авиационных фирм. Вряд ли при переходе к бесшарнирному креплению лопастей можно рассчитывать на существенное снижение веса втулки. Достигаемое усовершенствование конструкции нацелено на повышение эффективности за счет снижения себестоимости и эксплуатационных расходов и на улучшение характеристик управляемости ввиду значительного увеличения мощности управления. Эти улучшения достигался ценой преодоления значительных трудностей вследствие усложнения процессов, расчета.
Весовое совершенство втулки, характеризующееся коэффициентом:
, (1.1)
где mвт –масса втулки;
z - число лопастей;
Р - центробежная сила;
К - коэффициент.
Весовое совершенство втулки существенно повышается за счет: замены стали на титановые сплавы; применения проволочных торсионов в конструкции осевого шарнира (ОШ) и самосмазывающихся подшипников в рычагах поворота лопасти; модернизации центробежных ограничителей свеса; использования пружинно-гидравлических демпферов, снижающих действующие в полете переменные нагрузки в плоскости вращения; некоторого повышения напряженности конструкции с учетом современных конструктивно технологических мероприятий, (рисунок 1.1).

Рисунок 1.1 - Весовое совершенство втулок несущего винта различных типов
Стремление максимально облегчить конструкцию, снизить ее стоимость и упростить техническое обслуживание в эксплуатации привело к созданию втулокиз композиционных материалов без обычных горизонтальных шарниров (ГШ), такие втулки называют бесшарнирными .
1.2 Типы втулок несущего винта вертолета
В настоящее время практически применяется восемь основных схем втулок несущих винтов, кинематические схемы которых приведены в рисунке 1.2. Рассмотрим наиболее широко применяющиеся конструкции втулок и определим преимущества и недостатки каждой схемы.
Классическая схема втулки несущего винта с шарнирным креплением лопастей: допасти крепятся посредством горизонтальных, вертикальных и осевых шарниров. В этом случае существенную роль играет величина разноса (расстояния от оси втулки) горизонтальных и вертикальных шарниров, которая определяет конструкцию втулки.
Несущий винт с совмещенными горизонтальными шарнирами и вертикальными шарнирами достаточно приемлем в конструктивном отношении, допускает использование простой методики при определении напряжений.
.
а - классическая трехшарнирная; б - с совмещенными ГШ и ВШ; в - с вынесенным ВШ; г - с вынесенным ГШ и ВШ; д - на кардане; е - с эластомерным общим шарниром; ж - полужесткие винты; з - жесткие винты
Рисунок 1.2 - Кинематические схемы втулок несущего винта
Однако, вертолет с таким несущим винтом неустойчив, имеет неудовлетворительные характеристики управляемости, подвержен опасности возникновения самовозбуждающихся колебаний на земле и в воздухе. Втулка такого несущего винта тяжела и сложна, должна также включать демпферы колебания лопасти относительно вертикальных шарниров и упора-ограничителя, ограничивающего перемещение лопастей в шарнирах.
Несущий винт с вертикальными и горизонтальными шарнирами, имеющими небольшой разнос, обладает значительно лучшими характеристиками устойчивости к управляемости, но ему присущи, в определенной степени, все остальные недостатки схемы с совмещенными вертикальными и горизонтальными шарнирами.
Несущий винт с большим разносом горизонтальных и вертикальных шарниров имеет превосходные характеристики устойчивости и управляемости, подбором увеличенного разноса вертикальных шарниров и соответствующих характеристик демпфировании устраняются самовозбуждающиеся колебания вертолета. Однако втулка и комлевые части лопастей получаются неизбежно тяжелее и сложнее, чем у несущего винта с совмещенными шарнирами. Большой разнос шарниров привлекает внимание конструкторов также в связи с проблемой уменьшения срыва потока на отступающей лопасти.
Схемы втулок несущих винтов с шарнирным креплением лопастей помимо того, что они отличатся взаиморасположением шарниров и величиной их разноса, могут иметь и другие отличия, например, проушины горизонтального шарнира могут быть смещены так, что ось вертикального шарнира не совпадает с радиальным положением продольной оси лопасти.
Втулка несущего винта с эластомерным подшипником обладает всеми преимуществами системы с шарнирным креплением лопастей при значительно упрощенной конструкции втулки. Эластомерный подшипник состоит из чередующихся сферических слоев эластомера (резины) и металла. Под действием центробежной силы лопасти эластомерный подшипник сжимается, а перемещения лопастей в плоскости взмаха и в плоскости вращения, а также изменение угла установки лопасти - приводят к сдвигу эластомера.
Втулка несущего винта на кардане не имеет сложных элементов, свойственных схеме с шарнирной подвеской лопастей и является, по-видимому, самой простой в конструктивном выполнении. В ней отсутствуют вертикальные шарниры и демпферы для демпфирования колебаний лопастей относительно вертикальных шарниров. Недостатком этой схемы является неприменимость ее для больших вертолетов вследствие ограничений, связанных с постоянным углом конусности лопастей несущего винта. Кроме того, несущему винту на кардане свойственен особый вид неустойчивости типа аэродинамического флаттера, получивший название "волнение" несущего винта (от волнообразной траектории, прочерчиваемой в пространстве концами лопастей).
Жесткий несущий винт не имеет ни горизонтальных, ни вертикальных шарниров. Однако, при отсутствии шарниров, лопасти могут крепиться к втулке несущего винта жестко или посредством упругих элементов - торсионов, поэтому точнее следует называть такие несущие винты винтами с бесшарнирным креплением лопастей. Жесткое крепление лопастей может быть применено на небольших вертолетах, чтобы избежать чрезмерной величины переменного изгибающего момента, действующего в комле лопасти. Отклонение лопастей в плоскости взмаха и в плоскости вращения несущего винта, в этом случае, осуществляется благодаря упругой деформации самих лопастей, которые, следовательно, должны бить выполнены достаточно упругими.
При креплении лопастей к втулке посредством упругих элементов-торсионов, последние воспринимают действующие на лопасти центробежные силы и позволяют лопастям отклоняться в плоскости взмаха и в плоскости вращения несущего винта. Жесткий несущий винт обладает рядом преимуществ: допускает значительное смещение центровки вертолета, быстро реагирует на управление и обеспечивает хорошие характеристики устойчивости вертолета.
Экспериментально было определено, что мощность управления жесткого несущего винта вдвое превышает мощность управления несущего винта на кардановом подвесе, причем, теоретические расчеты показали, что жесткий винт имеет в 14 раз большую потенциальную возможность управления в сравнении с винтом на кардане. У вертолета с жестким несущим винтом может быть обеспечена хорошая продольная управляемость без хвостового оперения.
Применение жесткого несущего винта допускает использование наклоняющегося пилона, обеспечивающего возможность изменения угла атаки несущего винта и благодаря этому возможность установки в полете фюзеляжа в положение, соответствующее минимальному сопротивлению вертолета, что особенно существенно для скоростных вертолетов. Кроме того, жесткое крепление лопастей несущего винта позволяет перераспределять аэродинамическую нагрузку на ометаемую площадь несущего винта (путем бокового смещения центра тяжести вертолета) таким обрезом, что это может быть использовано для отдаления срывного режима на отступающей лопасти, уменьшения вибраций и увеличения максимальной скорости полета вертолета.
1.3 Особенности использования эластомерных подшипников
У втулки несущего винта с эластомерными подшипниками маховое движение, перемещение в плоскости вращения и изменение угла установки каждой лопасти обеспечивается одним эластомерным подшипником (рисунок 1.3). Для сохранения постоянного положения геометрического центра эластомерного подшипника применяется дополнительный самосмазывающийся подшипник, воспринимающий только небольшие поперечные нагрузки, перпендикулярные продольной оси лопасти.

1-вал несущего винта, 2- лопасть, 3- эластомерный подшипник.
Рисунок 1.3 - Схема втулки несущего винта с эластомерным подшипником
Эластомерный подшипник должен выполнять следующие четыре функции:
- воспринимать полную центробежную силу лопасти;
- обеспечивать изменение угла установки лопасти;
- обеспечивать маховое движение лопасти;
- обеспечивать перемещение лопасти в плоскости вращения.
Одновременное выполнение всех этих четырех функций одним подшипником возможно прежде всего лишь в том случае, если подшипник имеет сферическую форму. Сферический эластомерный подшипник состоит из чередующихся слоев стали и резины склеенных друг с другом Центробежная сила сжимает весь подшипник, который имеет очень высокую степень упругости при сжатии, более высокую, чем предполагалось при расчетных исследованиях, что является большим преимуществом данной конструкции, так как дает при сжатии незначительное смещение относительно оси несущего винта как центра подшипника, так и комля лопасти.
Изменение угла установки лопасти и перемещения ее в плоскости взмаха и в плоскости вращения вызывает относительное смещение металлических пластин подшипника, ограничиваемое силами, возникающими в слоях резины при их сдвиге.
По сравнению с обычными шарнирами эластомерный подшипник, в котором угловые перемещения лопастей осуществляются за счет сдвига упругих (эластомерных) элементов, имеет следующие преимущества:
- уменьшается количество деталей;
- упрощается техническое обслуживание;
- отсутствует истирание, износ или проскальзывание вращающихся элементов;
-устранено загрязнение рабочих деталей (шарнирных подшипников) присутствующими в окружающей среде грязью, пылью, водой.
В качестве эластомерного (упругого) элемента в эластомерном подшипнике выбирают натуральный каучук, обладающий рядом преимуществ, важных для выполнения намечаемых функций, в то время как недостатки его не вызывают серьезных конструктивных проблем.
Преимуществами выбранного материала в данном случае являются превосходные прочностные характеристики. Недостатками являются: ограниченный диапазон рабочих температур; чувствительность к воздействию света, озона, загрязнению маслом; старение.
Кратко рассмотрим возможное влияние недостатков натурального каучука, при использовании его в эластомерном подшипнике, на рабочие характеристики изделия. Диапазон рабочих температур втулки несущего винта изменяется, примерно, от -54°С до +71°С. Путем определенных добавок к натуральному каучуку получены сорта резины эффективный диапазон температур которых изменяется от -54°С до +82°С, что перекрывает диапазон рабочих температур втулки.
Для выяснения влияния повышенных температур на усталостную прочность эластомерного подшипника были проведены 500 часовые динамические испытания подшипника при температуре 93°С, На рисунке 1.4 показана зависимость деформации подшипника от нагрузки до и после 500 часовых испытаний на усталостную прочность. Как следует из графиков рисунка 1.4, после 500 часовых испытаний при температуре 93°С степень упругости испытываемого образца оставалась в пределах производственных допусков.

1-до динамических испытаний 2 – после 500-часовых динамических испытаний на усталость при температуре 93º
Рисунок 1.4 - Графики зависимости деформации эластомерного подшипника от нагрузки
При предельной отрицательной температуре (-54°С) резко увеличивается жесткость резины. Характеристика хрупкости при этом не достигает критической точки, которая наступает при температуре (-62°С) Динамические испытания, проведенные при температуре (-64°С), показали, что несмотря на увеличение жесткости в 22 раза по сравнению с жесткостью при комнатной температуре, подшипник продолжает нормально работать без разрушения.
Одним из основных преимуществ втулки с эластомерным подшипником является отсутствие смазки, так что опасность загрязнения эластомерного подшипника маслом практически исключается. Однако, в демпфере лопасти (при ее перемещении в плоскости вращения несущего винта) применяется гидравлическая жидкость. Для защиты от возможного загрязнения эластомерного подшипника гидравлической падкостью и от воздействия солнечного света и озона может быть применено защитное покрытие подшипника.
Для резины характерно изменение ее физических свойств с течением времени, т.е. старение. Процесс старения усиливается от воздействия таких факторов, как солнечный свет, кислород, озон, тепло, дождь и другие неблагоприятные влияния окружающей среды при эксплуатации вертолета. За процессом старения эластомерного подшипника должен быть установлен строгий контроль с регулированием условий хранения для ограничения его старения с момента вулканизации подшипника и до постановки втулки с этим подшипником на вертолет.

Заключение (выдержка)

В выпускной квалификационной работе произведен анализ существующих типов втулок несущих винтов вертолетов, а также произведены расчеты на прочность бесшарнирной втулки несущего винта и втулки несущего винта с металлофторопластовым подшипником и торсионом. Результаты анализа доказали возможность установки на вертолет Ми-8 втулок данных типов. Повышение эффективности эксплуатации втулки несущего винта вертолета Ми-8 достигается значительным сокращением работ по осмотру креплений и смазке втулки, эти факты рассмотрены в специальной части выпускной квалификационной работы. Кроме того, срок эксплуатации бесшарнирной втулки напрямую зависит от условий ее эксплуатации и результатов дефектоскопии, в то время как втулка несущего винта вертолета Ми-8 имеет ресурс 20000 часов после чего подлежит замене. Экономическое обоснование замены.
Раздел безопасность полетов связан обеспечением безопасности полетов в сложных метеорологических условиях. Это весьма сложная задача, требующая комплексного подхода и тщательного контроля за исполнением требуемых предписаний, анализа и проработки свершающихся происшествий. Безопасности полетов при посадке в особых метеорологических условиях можно добиться соблюдая все требования и наставления по эксплуатации вертолета, а также проводя дополнительные предпосадочные подготовки, способствующие совершенствованию навыков экипажа.
Экономическое обоснование замены втулки, рассмотренное в пятой части работы доказывает целесообразность замены трехшарнирной втулки несущего винта вертолета Ми-8 на бесшарнирную втулку несущего винта.
В разделе безопасность и экологичность проекта проанализированы факты влияющие на безопасность персонала при работе на высоте. Особо отмечены факторы риска, связанные с работами на высоте при замене втулки, влияние которых снижается за счет соблюдения правил техники безопасности.
Расчеты экономических затрат на обслуживание бесшарнирной и шарнирной втулок несущего винта вертолета показал. что затраты на обслуживание бесшарнирной втулки несущего винта меньше затрат на обслуживание шарнирной втулки несущего винта, это доказывает экономическую целесообразность замены втулки несущего винта на бесшарнирную. Кроме того, бесшарнирная втулка несущего винта имеет значительно меньшую массу, и замена втулки даст дополнительную полезную нагрузку и тем самым увеличит экономический эффект от замены элемента несущий системы. Годовой эффект от установки одной втулки составит руб.

Литература

1 Аэродинамика, динамики полета, конструкция, оборудование и техническая эксплуатация вертолетов. Справочник. А.М. Володко, М.П. Верхозин, В.А. Горшков. –М., Военное издательство. 1992.-556с.
2 Конструкция вертолетов. Учебник для ВУЗов В.Н. Далин, С.В. Михеев. - М., МАИ, 2001. – 352с.
3 Втулки несущих винтов вертолетов. Перевод М.А. Лернер. – М., ЦАГИ, 1972.-54с.
4 Конструирование втулок несущих винтов вертолетов. Учебное пособие Сохань О.Н. - М., МАИ, 1981.-54с.
5 Messerschmitt-Boelkow-Blohm Bo-105 1967 [Электронный ресурс] -Режим доступа свободный: h**t://w*w.aviastar.org/helicopters_rus/mbb-105-r.html Дата обращения (23.10.2010)
6 Конструирование винтов силовых установок приводов. Учебник для ВУЗов. Ф.П. Курочкин. -М., МАИ, 1980.-139с.
7 Металлофторопластовые подшипники А.П. Семенов, Ю.Э.Савинский. -М.Машиностроение 1976.- 192с.
8 Руководство по технической эксплуатации вертолета Ми-8 книга 2, 1984.
9 Вертолет Ми-8(устройство и техническое обслуживание).В.А.Данилов Транспорт, 1988.-278с.
10 Выбор рациональных конструктивных параметров торсиона втулки несущего винта вертолета из композиционных материалов. Учебное пособие для ВУЗов. Е.А Башаров.-М, МАИ -2010.
11 Основы механики, проектирования и технологии изготовления изделий из слоистых композиционных материалов. Учебное пособие для ВУЗов. Ю.С.Первушин, В.С. Жернаков. -Уфа, 2008. -298с.
12 Техническая эксплуатация летательных аппаратов. Под редакцией Н.Н.Смирнова – М.: Транспорт, 1997.
13 Руководство по технической эксплуатации вертолета Bk-117
14 Конструкция и эксплуатация вертолетов и двигателей. Учебник для
ВУЗов. Судаков В.Я. -М., Воениздат, 1987.
15 Анализ безопасности полетов по типу воздушного судна. Государственный центр «Безопасность полетов на воздушном транспорте» .- М. 2008-148с.
16 Экономика гражданской авиации. Учебник для ВУЗов Степанова Н.И., МГТУГА 2003.-103с.
17 Межотраслевые правила труда при работе на высоте. -М. 2004.
18 Инструкция по охране труда при проведении работ повышенной опасности ИОТ 0011-02, 2002.
19 Наставления по технической эксплуатации и ремонту авиационной техники в гражданской авиации России. (НТЭРАТ ГА-93) - М.,1994.
20 Конструкция вертолетов. Учебник для авиационных техникумов.ЮС Богданов, Р.А.Михеев. М., Машиностроение 1990.-267с.
21. Регламент технического обслуживания вертолета Ми-26 книга 2.
22 Регламент технического обслуживания вертолета Bo-105
23 Справочник по авиационным материалам и технологии их применения
Александров В.Г., Базанов Б.И., -М., 1979
24 Техническая эксплуатация вертолетов. Учебное пособие.Беляков В.Т. Воениздат.1961г. 312 с.
25 Расчетно-экспериментальное исследование прочности упругих элементов бесшарнирных винтов вертолетов Голованов А. И., Митряйкин В. И. Изв. вузов. -Казань: Авиационная техника, 2001.
26 Основы проектирования и изготовления конструкции ЛА из КМ Васильев В. В. - М.: МАИ, 1985.
27 Оптимальное проектирование элементов авиационных конструкций из КМ. Дудченко А. А. -М.: Издательство МАИ, 2002.
28 Композиционные материалы: Справочник / Под ред. В. В. Васильева. - М.: Машиностроение, 1990.
29 Конструкция вертолетов Завалов О. А. -М.: Изд-во МАИ, 2004.
30 Методы проектирования конструкций. Бирюк В. И., Липин Е. К., Фролов В. -М.- М.: Машиностроение, 1977.