Схема включения лдс на 11 ватт. Подключение люминесцентных ламп без дросселя и стартера. Схемы подключения лампы дневного света со стартером

(ЭПРА) люминесцентные лампы перегорают. Такое случается с большими светильниками, и с компактными люминесцентными лампами (КЛЛ), более известными как экономлампы. И если сгоревшую электронику починить можно, то попросту выбрасывают.

Понятно, что если у лампы, подключенной до дросселя со стартером или к ЭПРА, перегорит одна из нитей накала, то светильник уже не включится. Кроме того, старая «брежневская» схема подключения имеет ещё несколько недостатков: затяжной запуск стартером, сопровождающийся раздражающими миганиями; мерцание лампы с удвоенной частотой сети.

Однако выход прост - запитать люминесцентную лампу не переменным, а постоянным током, и чтобы не использовать капризные стартеры, нужно приложить при запуске повышенное напряжение сети. Таким образом, мало того, что источник света перестанет мерцать, но и после подключения по новой схеме даже перегоревшая люминесцентная лампа проработает ещё не один год.

Для запуска с умноженным напряжением сети не понадобится нагревать спирали - электроны для начальной ионизации будут вырваны уже при комнатной температуре, даже из перегоревших спиралей. Так как не нужен нагрев до температуры 800–900 градусов для тлеющего стартового разряда, то резко продлевается срок службы любой люминесцентной лампы, и с целыми спиралями. После запуска, кусочки нитей становятся теплыми за счет стабильного потока электронов. Простейшая схема, имеющая эти преимущества, следующая:

На рисунке показана схема двухполупериодного выпрямителя с удвоением напряжения, здесь лампа загорается мгновенно

При подключении по такой схеме нужно соединить вместе оба внешних вывода каждой нити накала лампы - без разницы, перегоревшие они, или целые.

Конденсаторы С1, С4 нужны неполярные с рабочим напряжением более чем в 2 раза больше сетевого (например, МБМ не ниже 600 вольт). В этом и есть главный минус схемы - в ней применяются два конденсатора большой емкости, на высокое напряжение. Такие конденсаторы имеют значительные габариты.

Конденсаторы С2, С3 тоже нужны неполярные и желательно, чтобы они были слюдяными на напряжение 1000 В. На диодах Д1, Д4 и конденсаторах С2, С3 напряжение подскакивает до 900 В, чем обеспечивается надежное зажигание холодной лампы. Также эти две емкости способствуют подавлению радиопомех. Светильник можно зажечь и без этих конденсаторов и диодов, но с ними включение становится более безотказным.

Резистор нужно намотать самостоятельно из нихромовой или манганиновой проволоки. Рассеиваемая на нем мощность значительна, так как светящаяся люминесцентная лампа не имеет своего внутреннего сопротивления.

Подробные номиналы элементов схемы в зависимости от мощности светильника приведены в таблице:

Диоды можно использовать необязательно указанные в таблице, а аналогичные современные, главное, чтоб они подходили по мощности.

Чтобы зажечь неподдающуюся лампу на один из концов наматывают колечко из фольги и соединяют его проводком со спиралью на противоположной стороне. Такой ободок шириною в 50 мм вырезается из тонкой фольги и приклеивается к колбе лампы.

Следует заметить, что люминесцентная лампа вовсе не предназначена для работы на постоянном токе. При таком питании световой поток от неё со временем ослабевает из-за того, что пары ртути внутри трубки постепенно собираются возле одного из электродов. Хотя, восстановить яркость свечения достаточно легко, нужно лишь перевернуть лампу, поменяв местами плюс с минусом на её концах. А чтобы вовсе не разбирать светильник, имеет смысл заранее установить в нем переключатель.

В цоколе маленькой КЛЛ уместить такую схему, разумеется, не получиться. Но и зачем это нужно! Можно же всю схему пуска собрать в отдельной коробке и через длинные провода подсоединить к светильнику. Важно из энергосберегающей лампы вытянуть всю электронику, а также соединить два вывода каждой её нити накоротко. Главное, не забыть, и не всунуть в такой самодельный светильник исправную лампу.

Самодельный ветрогенератор. Ветрогенератор на базе асинхронного двигателя Подключение люминесцентных ламп через ЭПРА

(или как мы еще привыкли их называть Лампа дневного света ) зажигаются при помощи разряда, создаваемого внутри колбы.
если кому интересно узнать об устройстве такой лампы- о их преимуществах и недостатках то можете заглянуть в .

Для того чтобы получить высоковольтный разряд применяются специальные приспособления- балластные дроссели управляемые стартером.
Работает это примерно так: внутри фурнитуры лампы размещается дроссель и конденсатор которые образуют колебательный контур. Последовательно с этим контуров устанавливается стартер- неоновая лампа с небольшим конденсатором. При прохождении тока через неоновую лампу в ней возникает электрический пробой, сопротивление лампы падает практически до нуля, но она практически сразу-же начинает разряжаться через конденсатор. Таким образом стартер хаотично открывается-закрывается и в дросселе возникают хаотичные колебания.
За счет ЭДС самоиндукции эти колебания могут иметь амплитуду до 1000 Вольт, они-то и служат источником высоковольтных импульсов зажигающих лампу.

Данная конструкция применяется в быту уже много лет и имеет целый ряд недостатков- неопределенное время включения, износ нитей накала ламп и огромный уровень радиопомех.

Как показывает практика, в стартерных устройствах (упрощенная схема одного из них приведена на рис. 1) наибольшему нагреву подвергаются участки нитей накала, к которым подводится сетевое напряжение. Здесь зачастую нить перегорает.

Более перспективны - без стартерные устройства зажигания , где нити накала по своему прямому назначению не используются, а выполняют роль электродов газоразрядной лампы - на них подается напряжение, необходимое для поджига газа в лампе.

Вот, к примеру, устройство, рассчитанное на питание лампы мощностью до 40 Вт (рис. 2). Работает оно так. Сетевое напряжение подается через дроссель L1 на мостовой выпрямитель VD3. В один из полупериодов сетевого напряжения конденсатор С2 заряжается через стабилитрон VD1, а конденсатор СЗ - через стабилитрон VD2. В течение следующего полупериода напряжение сети суммируется с напряжением на этих конденсаторах, в результате чего лампа ЕL1 зажигается. После этого указанные конденсаторы быстро разряжаются через стабилитроны и диоды моста и в дальнейшем не оказывают влияния на работу устройства, поскольку не в состоянии заряжаться - ведь амплитудное напряжение сети меньше суммарного напряжения стабилизации стабилитронов и падения напряжения на лампе.

Резистор R1 снимает остаточное напряжение на электродах лампы после выключения устройства, что необходимо для безопасной замены лампы. Конденсатор C1 компенсирует реактивную мощность.

В этом и последующих устройствах пары контактов разъема каждой нити накала можно соединить вместе и подключить к "своей" цепи - тогда в светильнике будет работать даже лампа с перегоревшими нитями.

Схема другого варианта устройства, рассчитанного на питание люминесцентной лампы мощностью более 40 Вт, приведена на рис. 3. Здесь мостовой выпрямитель выполнен на диодах VD1-VD4. А "пусковые" конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления. Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VDЗ), а в другой - СЗ (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов. Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.

Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.

Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис. 4. При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов - этому способствуют диоды VD1,VD2.

Дополнив обычный светильник с лампой накаливания данным устройством с люминесцентной лампой, можно улучшить общее или местное освещение. Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или 100 Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью 200 или 250 Вт. В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.

Несколько лучший вариант питания мощной люминесцентной лампы - использовать устройство с учетверением выпрямленного напряжения, схема которого приведена на рис. 5. Некоторым усовершенствованием устройства, повышающим надежность его работы, можно считать добавление терморезистора, подключенного параллельно входу диодного моста (между точками 1, 2 узла У1). Он обеспечит более плавное увеличение напряжения на деталях выпрямителя-умножителя, а также демпфирование колебательного процесса в системе, содержащей реактивные элементы (дроссель и конденсаторы), а значит, снижение помех, проникающих в сеть.

В рассмотренных устройствах используются диодные мосты КЦ405А или КЦ402А, а также выпрямительные диоды КД243Г-КД243Ж или другие, рассчитанные на ток до 1 А и обратное напряжение 400 В. Каждый стабилитрон может быть заменен несколькими последовательно соединенными с меньшим напряжением стабилизации. Конденсатор, шунтирующий сеть, желательно применить неполярный типа МБГЧ, остальные конденсаторы - МБМ, К42У-2, К73-16. Конденсаторы рекомендуется зашунтировать резисторами сопротивлением 1 МОм мощностью 0,5 Вт. Дроссель должен соответствовать мощности используемой люминесцентной лампы (1УБИ20 - для лампы мощностью 20 Вт, 1УБИ40 - 40 Вт, 1УБИ80-80ВТ). Вместо одной лампы мощностью 40 Вт допустимо включить последовательно две по 20 Вт.

Часть деталей узла монтируют на плате из одностороннего фольгированного стеклотекстолита, на которой оставлены площадки для подпайки выводов деталей и соединительных лепестков для подключения узла к цепям светильника. После установки узла в корпус подходящих габаритов его заливают эпоксидным компаундом.

Схемы для подключения ЛДС

Для подключения обычных ламп дневного света существует несколько схем. При их применении необходимо обращать внимание на суммарную мощность нагрузки (особенно при подборе дросселей-балластов) и напряжения на отдельных элементах (особенно стартерах - стартеры выпускаются двух типов: полное напряжение (220В) и половинное)

В некоторых дросселях-балластах имеется первичная коммутация проводников В связи с этим схема подключения ЛДС может немного измениться. Поможет в этом схема на корпусе пуско-регулирующего устройства.

Большинство схем с применением ЛДС имеет на входе конденсатор-фильтр для защиты потребителей от помех (импульсов) при включении-выключении приборов.

  • Подключение лампы дневного света.
  • подключение ЛДС
  • подключение люминесцентных ламп.
  • Схемы с конденсатором
  • Современные схемы подключения люминесцентных ламп дневного света
  • схемы подключения ЛДС

1. Самая простая схема для подключения одиночной лампы дневного света . При использовании одиночных ламп возможно мерцание света лампы, что неблагоприятно сказывается на восприятии света. В этом случае следует отдавать предпочтение современным электронным схемам пуско-регулирующих устройств (ПРА). Там же могут быть указаны предельные мощности нагрузки на данный прибор.

2. В светильниках с применением ЛДС обычно используют парное количество ламп (2 или 4). В них эффект мерцания света менее заметен.

При этом сами трубки ламп соединяются парами последовательно или параллельно. В одной из веток может ставиться фазосдвигающий конденсатор для уменьшения общего мерцания - лампы мерцают поочередно и суммарно имеем более стабильное свечение.

а) Последовательная схема. (на стартерах половинное напряжение - тип S2).

б) Параллельная схема. (на стартерах полное напряжение 220В)

в)Параллельная схема с фазосдвигающим конденсатором.

г) Современные схемы. В современных люминесцентных светильниках применяют бездроссельную и безстартерную схему. Эти устройства заменяет электронная схема (электронный балласт), обеспечивающая надежный пуск и стабильную работу ЛДС.

Промышленность выпускает два вида электронных устройств для пуска и работы люминесцентных ламп:

В пластиковом корпусе из которого выходят подсоединительные проводники.Схема подключения обычно нарисована на корпусе прибора.

Сама электронная плата без защитного корпуса, вставляемая в специальные держатель. В момент написания статьи его размеры близки к размерам спичечного коробка. При обслуживании такой электронной платы следует обратить внимание на состояние защитного лакового покрытия. Оно легко разрушается при вытягивании из держателей. При последующей установке назад возможно замыкание элементами крепления участков платы и выхода ее из строя. Можно кромку платы обвернуть изолентой в месте упора держателей.

Эти же схемы применяют и в настольных люминесцентных лампах.

Анализ поисковых запросов показывает, что часть пользователей интересуется люминесцентными светильниками. Применяются обычно светильники из двух или .

На данный момент могу проинформировать о наличии электронного балласта для светильника из 4-х ламп по 18 Вт. Вскрытие корпуса показало, что в нем применена схема аналогичная для ламп-экономок. На одной плате смонтировано две схемы для подключения двух ЛДС каждая..

На мой взгляд экономичнее в плане ремонта использовать 2 отдельных балласта (другого типа) по одному на две лампы. В первом случае при поломке придется менять весь прибор, а во втором две лампы будут работать.

д) Редкие схемы. В некоторых случаях применяют бездроссельную схему с уможителем напряжения. Поскольку для розжига ЛДС необходимо напряжение несколько большее 220В, в этой схеме имеется умножитель напряжения (4 диода и 2 конденсатора), обеспечивающий стабильное включение и работу лампы даже с перегоревшей нитью разогрева (она здесь просто не нужна). Параметры электронных компонентов не указаны (схема интересна только отдельным энтузиастам)- их легко можно найти при надобности на других сайтах. Диоды и конденсаторы в принципе легкопокупаемые на радиорынках, а вот с резистором (довольно большая мощность) могут быть проблемы в наличии.

Есть и другие варианты схем питания ЛДС (Н.П. постоянным током и др.), но практического применения они не имеют. При питании постоянным током на колбе лампы со временем образуется темная область (пятно), уменьшающая силу света. Высоковольтные схемы питания ЛДС приводят к быстрому износу электродов лампы.

На практике нестандартные схемы включения ЛДС никакого выигрыша во время эксплуатации НЕ ДАЮТ и интересны только для одиночных любителей попробовать свои силы.

Некоторые особеннности в работе люминесцентных ламп.

Мигание лампы, лампа не может включиться - для устранения сначала поменять стартер, если не поможет - поменять лампу, проверить напряжение в сети.

Мерцание люминесентной лампы в т.ч. и компактной экономки даже в выключенном состоянии - чаще всего встречается если выключатель установлен на нулевом проводе.

Мне понравилась фраза - лампы накаливания - это вчерашний день, лампы дневного света - сегодняшний, а полупроводниковые (LED) - завтрашний день. Электрическая проводка делается на будущее. Перетереть стены, потолок, поменять обои - данные работы делаются чаще чем замена электропроводки. Электропроводку следует делать с ориентацией на завтрашний день.

Также после 2015 года поставки люминесцентных ламп на Украину будут прекращаться. Идет переход на светодиодные источники света. Сейчас в продаже имеются практически все типы ламп (по внешнему виду) для замены устаревших источников света (ламп накаливания, люминесцентных) на современные светодиодные (LED). При установке светодиодных аналогов необходимо переделать схему подключения в самом светильнике. Фактически выбросить дросселя, стартеры, Оставляем только подсоединительные элементы (цокольный патрон, держатель), в которые вставляется (вкручивается) современня LED лампа. Светодиодные аналоги ламп подключаются напрямую в сеть 220В. Необходимые вспомогательные элементы находятся внутри самих приборов.

Лампы дневного света с самых первых выпусков и частично до сих пор зажигаются с помощью электромагнитной пускорегулирующей аппаратуры – ЭмПРА. Классический вариант лампы выполнен в виде герметичной стеклянной трубки со штырьками на концах.

Как выглядят люминесцентные лампы

Внутри она заполнена инертным газом с парами ртути. Ее установка производится в патроны, через которые подается напряжение на электроды. Между ними создается электрический разряд, вызывающий ультрафиолетовое свечение, которое действует на слой люминофора, нанесенный на внутреннюю поверхность стеклянной трубки. В результате появляется яркое свечение. Схема включения люминесцентных ламп (ЛЛ) обеспечивается двумя основными элементами: электромагнитным балластом L1 и лампой тлеющего разряда SF1.

Схема включения ЛЛ с электромагнитным дросселем и стартером

Схемы зажигания с ЭмПРА

Устройство с дросселем и стартером работает по следующему принципу:

  1. Подача напряжения на электроды. Ток через газовую среду лампы сначала не проходит из-за ее большого сопротивления. Он поступает через стартер (Ст) (рис. ниже), в котором образуется тлеющий разряд. При этом через спирали электродов (2) проходит ток и начинает их подогревать.
  2. Контакты стартера разогреваются, и один из них замыкается, так как он выполнен из биметалла. Ток проходит через них, и разряд прекращается.
  3. Контакты стартера перестают разогреваться, и после остывания биметаллический контакт снова размыкается. В дросселе (Д) возникает импульс напряжения за счет самоиндукции, которого достаточно для зажигания ЛЛ.
  4. Через газовую среду лампы проходит ток, после запуска лампы он уменьшается вместе с падением напряжения на дросселе. Стартер при этом остается отключенным, так как этого тока недостаточно для его запуска.

Схема включения люминесцентной лампы

Конденсаторы (С 1) и (С 2) в схеме предназначены для снижения уровня помех. Емкость (С 1), подключенная параллельно лампе, способствует снижению амплитуды импульса напряжения и увеличению его продолжительности. В результате увеличивается срок службы стартера и ЛЛ. Конденсатор (С 2) на входе обеспечивает существенное снижение реактивной составляющей нагрузки (cos φ увеличивается с 0,6 до 0,9).

Если знать, как подключить люминесцентную лампу с перегоревшими нитями накала, ее можно использовать в схеме ЭмПРА после небольшого изменения самой схемы. Для этого спирали замыкают накоротко и последовательно к стартеру подключают конденсатор. По такой схеме источник света сможет проработать еще какое-то время.

Широко распространен способ включения с одним дросселем и двумя лампами дневного света.

Включение двух ламп дневного света с общим дросселем

2 лампы подключаются последовательно между собой и дросселем. Для каждой из них необходима установка параллельно подключенного стартера. Для этого используется по одному выводному штырьку с торцов лампы.

Для ЛЛ необходимо применять специальные выключатели, чтобы у них не залипали контакты от высокого пускового тока.

Зажигание без электромагнитного балласта

Для продления жизни сгоревших ламп дневного света можно установить одну из схем включения без дросселя и стартера. Для этого используют умножители напряжения.

Схема включения ламп дневного света без дросселя

Нити накала замыкают накоротко и подают на схему напряжение. После выпрямления оно увеличивается в 2 раза, и этого достаточно, чтобы светильник загорелся. Конденсаторы (С 1), (С 2) подбирают под напряжение 600 В, а (С 3), (С 4) – под 1000 В.

Способ подходит также для исправных ЛЛ, но они не должны работать с питанием постоянным током. Через некоторое время ртуть собирается вокруг одного из электродов, и яркость свечения падает. Чтобы ее восстановить, надо перевернуть лампу, тем самым изменив полярность.

Подключение без стартера

Применение стартера увеличивает время разогрева лампы. При этом срок его службы небольшой. Электроды можно подогревать без него, если установить для этого вторичные трансформаторные обмотки.

Схема подключения люминесцентной лампы без стартера

Там, где не используется стартер, на лампе есть обозначение быстрого старта – RS. Если установить такую лампу со стартерным запуском, у нее могут быстро перегореть спирали, так как для них предусмотрено большее время разогрева.

Электронный балласт

Электронная схема управления ЭПРА пришла на смену старым источникам дневного света для устранения присущих им недостатков. Электромагнитный балласт потребляет лишнюю энергию, часто шумит, выходит из строя и при этом портит лампу. Кроме того, светильники мерцают из-за низкой частоты напряжения питания.

ЭПРА представляет собой электронный блок, который занимает мало места. Люминесцентные светильники легко и быстро запускаются, не создавая шума и обеспечивая равномерное освещение. В схеме предусмотрено несколько способов защиты лампы, что увеличивает срок эксплуатации и делает ее работу безопасней.

ЭПРА работает следующим образом:

  1. Разогрев электродов ЛЛ. Запуск происходит быстро и мягко, что увеличивает срок службы лампы.
  2. Поджиг – генерирование импульса высокого напряжения, пробивающего газ в колбе.
  3. Горение – поддержание небольшого напряжения на электродах лампы, которого достаточно для стабильного процесса.

Схема электронного дросселя

Вначале переменное напряжение выпрямляется с помощью диодного моста и сглаживается конденсатором (С 2). Следом установлен полумостовой генератор высокочастотного напряжения на двух транзисторах. Нагрузкой служит тороидальный трансформатор с обмотками (W1), (W2), (W3), две из них включены противофазно. Они поочередно открывают транзисторные ключи. Третья обмотка (W3) подает резонансное напряжение на ЛЛ.

Параллельно лампе подключен конденсатор (С 4). Резонансное напряжение поступает на электроды и пробивает газовую среду. К этому времени нити накала уже разогрелись. После зажигания сопротивление лампы резко падает, вызывая снижение напряжения до достаточной величины, чтобы поддерживать горение. Процесс запуска продолжается менее 1 с.

Электронные схемы имеют следующие преимущества:

  • пуск с любой заданной задержкой времени;
  • не требуется установка стартера и массивного дросселя;
  • светильник не моргает и не гудит;
  • качественная светоотдача;
  • компактность устройства.

Использование ЭПРА дает возможность установить его в цоколь лампы, которую также уменьшили до размеров лампы накаливания. Это дало начало новым энергосберегающим лампам, которые можно вворачивать в обычный стандартный патрон.

В процессе эксплуатации лампы дневного света стареют, и для них требуется увеличение рабочего напряжения. В схеме ЭмПРА напряжение зажигания тлеющего разряда у стартера уменьшается. При этом может происходить размыкание его электродов, что вызовет срабатывание стартера и отключение ЛЛ. После она снова запускается. Подобное мигание лампы приводит к ее выходу из строя вместе с дросселем. В схеме ЭПРА подобное явление не происходит, поскольку электронный балласт автоматически подстраивается под изменение параметров лампы, подбирая для нее благоприятный режим.

Ремонт лампы. Видео

Советы по ремонту люминесцентной лампы можно получить из этого видео.

Устройства ЛЛ и схемы их включения постоянно развиваются в направлении улучшения технических характеристик. Важно уметь выбирать подходящие модели и правильно их эксплуатировать.

В условиях постоянного роста тарифов на использование электроэнергии, значительно увеличился спрос населения на более экономичные люминесцентные лампы (лампы дневного света).

Существует достаточно много вариантов их внешнего вида, однако, все они внутри устроены одинаково.

Внутри стеклянной колбы, какой бы формы она ни была, имеются:

  1. Инертный газ с парами ртути.
  2. Спиральные электроды. Люминесцентное покрытие (люминофор), нанесенное на стенки колбы.

Принцип работы заключается в следующем: под действием электрического тока, спирали (электроды) раскаляются и зажигают газ, под действием которого начинает светиться люминофор.

Из-за ограниченных размеров электродов, напряжения бытовой электросети недостаточно для их розжига. Поэтому, для розжига электродов применяют специальный элемент – дроссель. Кроме того, во избежание перегрева спирали, используется еще один элемент – , который после зажигания газа отключает накал электродов.

Конструктивно, дроссель (ЭмПРА) представляет собой катушку индуктивности со специальным ферромагнитным сердечником. Как правило, катушка с сердечником помещена в металлический корпус.

Принцип действия


Принцип работы лампы дневного света

В момент включения, первым начинает работу стартер. Он прогревает биметаллические электроды, в результате чего происходит их короткое замыкание. После этого, ток в цепи ограничиваясь только внутренним сопротивлением дросселя, резко возрастает (более чем в 3 раза). Электроды лампы мгновенно разогреваются, а биметаллические контакты стартера, остывая, размыкают цепь запуска.

В момент разрыва электрической цепи в ЭмПРА, благодаря эффекту самоиндукции, возникает высоковольтный импульс (800-1000 В), который обеспечивает электрический разряд в среде инертного газа.

Под действием этого разряда, начинается невидимое ультрафиолетовое свечение паров ртути, которое, воздействуя на люминофор, заставляет его светиться в видимом спектре.

При дальнейшей работе, электрический ток равномерно распределяется между дросселем и лампой, обеспечивая таки образом стабильную работу. При этом, пускорегулирующий аппарат (ПРА) не расходует энергию, а только накапливает ее и преобразовывает.

После зажигания газа, напряжение в колбе не превышает половины напряжения электросети, что недостаточно для последующего замыкания контактов стартера. Таким образом, при устойчивом свечении, стартер не участвует в рабочем процессе и его контакты остаются разомкнутыми.

Зажигание газа не всегда происходит с первого раза. Иногда стартеру необходимо 5-6 попыток повторить вышеописанный процесс, что вызывает, неприятный для глаз человека, эффект “моргания”.

Избежать этого эффекта помогает использование так называемого электронного дросселя (ЭПРА), принцип действия которого заключается в следующем:

  1. Низкочастотное напряжение бытовой электросети преобразуется в постоянное.
  2. Полученное постоянное напряжение инвертируется в высокочастотное (до 133 кГц) переменное напряжение.
  3. При подключении ЭПРА происходит резкое увеличение силы тока и напряжения до величин, достаточной для прогрева электродов и возникновения газового разряда.
  4. После начала свечения люминофора , напряжение на электродах уменьшается до величины напряжения свечения, а частота импульсов изменяется до уровня, при котором устанавливается ток номинального значения.

Использование электронного балласта позволяет обеспечить розжиг электродов мгновенно и при этом избавиться от неприятного “моргания”.

Виды


Существует несколько способов классификации ПРА, используемых в схемах подключения люминесцентных ламп.

При этом, их различают по:

  1. Принципу работы:
    • ЭмПРА (электромагнитные дроссели);
    • ЭПРА (электронные балласты);
  2. По уровню потери мощности, (уровень потери энергии дросселя может составлять от 15 до 100% мощности лампы):
    • D (обычный);
    • С (пониженный);
    • В (особо низкий);
  3. По уровню звукового шума:
    • Н (нормальный);
    • П (пониженный);
    • С (очень низкий);
    • А (особо низкий);

Подключение лампы дневного света

В общем случае, ЭмПРА к лампе дневного света подключается по последовательной электрической схеме . При этом, стартер подключается параллельно лампе, а параллельно электрической сети подключается компенсационный конденсатор, который служит для коррекции коэффициента мощности.

Электрическая схема подключения электронного балласта (ЭПРА) к люминесцентной лампе еще проще. В ней вообще отсутствуют дополнительные радиоэлементы.

Существует также большое количество электрических схем подключения ламп дневного света вообще без стартера или любых видов ПРА. Среди них особенно популярна электрическая бездроссельная схема, применение которой нисколько не изменяет технических характеристик люминесцентной лампы, но зато значительно продлевает срок ее службы.

Неисправности и ремонт электромагнитного ПРА


Чаще всего, источником неисправностей, связанных с применением ламп дневного света, является электрическая схема включения ПРА и стартера.

Мгновенно определить причину неисправности достаточно сложно, однако, существуют характерные визуальные эффекты, позволяющие выделить среди причин, вызвавших дефект, неисправный дроссель.

К таким визуальным эффектам относятся:

  1. “Огненная змейка”, вьющаяся по колбе. Ее появление свидетельствует о том, ток в лампе превышает допустимое значение, вследствие чего, электрический разряд стал нестабильным. Если при проверке вольт-амперной характеристики лампы, выявлены несоответствия заданным параметрам, то дроссель нужно менять.
  2. Потемнение колбы в зоне выходных контактов. Если потемнела колба в зоне цоколя, значит лампа скоро выйдет из строя. Основная причина этого явления – несоответствие значений пускового и рабочего тока вольт-амперной характеристике. Это чаще всего связано с неисправностью ПРА.
  3. Перегоревшие спирали. Чаще всего, спирали в лампе дневного света перегорают по причине сильной изношенности изоляции обмотки ЭмПРА.
  4. Запах гари или появление посторонних звуков. Возможно межвитковое замыкание в катушке индуктивности.
  5. Лампа не включается. Причиной также может быть неисправный ПРА, в котором произошел обрыв провода в обмотке. Правда этот вид неисправности встречается редко.

Проверку дросселя лучше всего проводить с помощью контрольного, заведомо исправного светильника. Для этого необходимо два провода, идущие от него соединить с цоколем проверочного светильника и включить эту конструкцию в электрическую сеть. Если люминесцентный светильник загорится в полную силу, значит дроссель исправен.

Ремонт

Самостоятельный ремонт ПРА рекомендуется проводить только специалистам, имеющим определенный опыт в осуществлении слесарных и электро-монтажных работ. Кроме того, необходимо наличие измерительных приборов и знание основных правил техники безопасности.

Приступая к замене или ремонту дросселя, необходимо отключить светильник от сети электропитания. Простое отключение его с помощью выключателя не избавит его от наличия напряжения на лампе.

Только после этого можно приступить к демонтажу ПРА и установке на его место нового. При этом, необходимо внимательно следить за тем, чтобы в том же порядке, в каком они были подключены ранее.

ВАЖНО: схемы подключения конкретных моделей нанесены на их корпусах. Там же указывают рабочее напряжение и электрическое сопротивление обмотки индуктивности.

Использование мультиметра


На определенном этапе проведения ремонтных работ, .

С его помощью можно определить:

  1. Целостность обмотки катушки индуктивности и ее электрическое сопротивление.
  2. Наличие межвиткового замыкания.
  3. Наличие обрыва в обмотке катушки индуктивности.

Однако, ремонт обмотки катушки индуктивности – дело не простое и также требует определенных навыков. Поэтому, в случае необходимости, проведение таких работ лучше поручить специалистам.


Выбирая новый ПРА:

  1. Необходимо обратить особое внимание на бренд изготовителя. Как правило, приобретение дешевого изделия неизвестного производителя гарантирует низкое качество изготовления. Надежный ПРА должен обеспечить надежную работу в течение не менее 3-х лет.
  2. На рынке можно случайно приобрести бракованное изделие. Поэтому, если позволяет бюджет, лучше приобрести несколько штук и договориться с продавцом о последующем возврате оставшихся.
  3. Лучше посоветоваться с людьми, имеющими определенный опыт работы с люминесцентными осветительными приборами.

В настоящее время, электронные ПРА, несмотря на относительно высокую цену, приобретают все большую популярность.

Ведь их использование позволяет:

  1. Увеличить срок службы ламп дневного света за счет применения щадящих режимов запуска и дальнейшего функционирования. Кроме того, в схеме подключения отсутствует часто ломающийся стартер.
  2. Полностью избавиться от шума и “моргания” в процессе эксплуатации.
  3. Получить до 20% экономии электроэнергии.