Анаэробная энергетическая установка подводных лодок. Воздухонезависимые энергетические установки современных дизельных подводных лодок. Двигатель внешнего сгорания

Современные неатомные подводные лодки (ПЛ) являются высокоэффективным средством вооруженной борьбы на море и представляют собой подвижные платформы, способные нести разнообразное оружие, а также совершать длительное плавание в отрыве от мест базирования. В настоящее время ПЛ российских и иностранных фирм в принципе мало отличаются друг от друга или, во всяком случае, сопоставимы между собой по архитектуре, водоизмещению, оснащению высокоточным оружием, включая ракеты различного класса, способные поражать любые морские и наземные цели. Эти ПЛ близки по живучести, надежности, возможностям радиоэлектронного вооружения и т.д.

Однако опыт показывает, что боевая эффективность дизельных подводных лодок в известной степени обесценивается из-за необходимости периодической подзарядки аккумуляторных батарей, что снижает скрытность их действий и повышает вероятность обнаружения. Так, дизельные подводные лодки ежесуточно затрачивают 2…5 ч на подзарядку батарей. Кроме того, ограниченность энергетических запасов дизельных ПЛ не позволяет использовать их в арктических районах, покрытых льдами.
Проблема увеличения продолжительности подводного плавания, исключающего необходимость частого подвсплытия для зарядки аккумуляторных батарей, может быть решена благодаря применению анаэробных энергетических установок мощностью 100…300 кВт, что повышает срок автономности неатомных ПЛ до 480…720 ч.

В соответствии с классификацией, принятой в ВМС западных стран, неатомные подводные лодки принято делить на три подкласса:

- класс «А» – классические ПЛ с дизель-электрической главной энерго установкой (ГЭУ);

- класс «В» – подлодки с гибридной ГЭУ, включающей наряду с дизель-электрической установкой еще и дополнительную анаэробную (воздухонезависимую) подсистему;

- класс «С» – подлодки, оснащенные только специальной анаэробной ГЭУ.

Одними из первых боеспособных образцов ПЛ с гибридными ГЭУ являлись немецкие подлодки с так называемыми «парогазовыми турбинами Вальтера», работавшими на перекиси водорода. Германские подлодки XXVI серии с турбинами Вальтера были способны развивать подводную скорость до 24…25 узлов. Корабельного запаса перекиси хватало на шесть часов полного хода, а в остальное время использовалась обычная дизель-электрическая установка и устройство для обеспечения работы дизеля на перископной глубине (шнорхель). Лодки XXVI серии имели архитектурный облик, существенно отличавшийся от традиционных, ориентированный на уменьшение сопротивления в подводном положении. Они стали своего рода шедеврами военно-морской техники, хотя вступить в строй и участвовать в боевых действиях не успели, зато послужили ценным материалом для стран-победительниц в послевоенной модернизации подводных флотов.

В Советском Союзе накануне Великой Отечественной войны также экспериментировали с подлодками, оснащенными анаэробными энергетическими установками. Так, четырнадцатая подводная лодка типа «М» XII серии (до 1940 г. называлась С-92, а затем Р-1) вошла в историю как первая советская лодка с единым двигателем – дизелем, для функционирования которого в качестве окислителя использовался жидкий кислород, хранившийся при особо низкой температуре (-180°С). Разработка РЕДО (регенеративный единый двигатель особый) велась в 1935-1936 гг. по инициативе и под руководством С.А. Базилевского.

Подлодка С-92 на испытаниях в 1939 г. доказала возможность работы дизеля под водой по замкнутому циклу на протяжении 5,5 ч при мощности 185 л. с.

В июле 1946 г. вышло постановление Совета Министров С.С.С.Р о развитии работ по созданию подводных лодок с «едиными» двигателями. В соответствии с постановлением началось проектирование опытной малой подводной лодки проекта 615 водоизмещением около 390 т, оснащенной «единым» двигателем, который был аналогичен по схеме двигателю лодки проекта 95. В 1955-1958 гг. на заводах № 196 и № 194 было построено 29 лодок этого типа. В процессе эксплуатации на лодках проекта А615 случилось несколько серьезных аварий. Как выяснилось, аварии возникали вследствие неучтенных особенностей энерго установки и недостаточной подготовки личного состава, который нелестно отзывался о своих ПЛ, называя их «зажигалками».

Вторым из отобранных для реализации типов «единого» двигателя стала уже упомянутая парогазовая турбинная установка (ПГТУ) немецкого конструктора Вальтера. Ленинградское ЦКБ-18 в предэскизном проекте 616 воспроизвело германскую лодку XXVI серии. В 1947 г. на территории советской оккупационной зоны в Германии создали специальное конструкторское бюро под руководством А.А. Антипина, которое занималось восстановлением технической документации парогазовой турбинной установки. Параллельно в ЦКБ-18 началось проектирование подлодки проекта 617 с ПГТУ. При этом все оборудование, кроме ПГТУ, планировалось изготовить на отечественных заводах.

По проекту лодка водоизмещением около 950 т обладала способностью развивать скорость подводного хода до 20 узлов на протяжении 6 ч. Опытную лодку заложили 5 февраля 1951 г. на заводе № 196, а ее испытания завершились лишь 20 марта 1956 г. В 1956-1959 гг. подлодка C-99 совершила 98 выходов в море и прошла более 6800 миль, из них 315 – с ПГТУ. 17 мая 1959 г. на корабле произошла серьезная авария: при запуске ПГТУ на глубине 80 м в турбинном отсеке прогремел взрыв. Лодка всплыла на поверхность и своим ходом пришла на базу. После откачки воды из отсека было установлено, что несчастье произошло вследствие разложения перекиси при контакте с попавшей в клапан грязью.

Впоследствии в связи с успехами в создании атомных подводных лодок руководство советского ВМФ и отечественной судостроительной отрасли практически утратило интерес к неядерным «единым» двигателям для ПЛ. Лишь в первой половине семидесятых годов минувшего столетия работы в указанном направлении возобновились. На этот раз была предпринята попытка оснащения подлодки проекта 613 энерго установкой с электрохимическим генератором мощностью 280 кВт. В 1988 г. подлодка «Катран» проекта 613Э успешно прошла расширенные государственные испытания и подтвердила принципиальную возможность создания и эффективного использования новой энергетики. Однако развал Советского Союза и последовавшие после этого события на несколько десятилетий отбросили создание отечественной ПЛ с электрохимическим генератором.

А конкуренты не дремали

В последнее десятилетие XX века в Германии, Швеции и Франции были созданы, прошли испытания и начали серийно выпускаться анаэробные энергоустановки на основе двигателей Стирлинга, парогазовых турбин и электрохимических генераторов. Так, германские компании Howaldtswerke-Deutsche Werft GmbH (HDW) и Thyssen Nordseewerke GmbH (TNSW) спроектировали и построили четыре подлодки типа 212 (U 31 – U 34, переданные флоту в 2005-07 гг.). В сентябре 2006 г. бундесмарине заказали еще две подлодки типа 212 со сроком их сдачи флоту в 2012-2013 гг.

Лодка типа 212 имеет подводное водоизмещение 1360 т, длину 53,5 м, ширину 6,8 м и высоту от киля до вершины ограждения выдвижных устройств 11,5 м. В одном из походов U 32 установила мировой рекорд длительности движения в подводном положении (без использования шнорхеля), оставаясь погруженной на протяжении двух недель.

Помимо ВМС Германии, аналогичными подлодками решили обзавестись и итальянские моряки. Фирма Fincantieri по германской лицензии построила в 2005-2007 гг. две лодки (S526 Salvatore Todaro и S527 Scire). В марте 2008 г. итальянское правительство приняло решение заказать еще две подлодки типа 212.

Несколько измененным и усовершенствованным типом германской подлодки с электрохимическими генераторами является проект 214, предложенный немецкими фирмами ВМС Греции. При стандартном водоизмещении 1700 т и длине 65 м лодка способна погружаться на глубину 400 м и несет вооружение из восьми 533-мм торпедных аппаратов. Греческое правительство заказало в Германии три лодки указанного типа. Успешно завершились переговоры о постройке четвертой подлодки Katsonis со сроком готовности в 2012 г.

Обладающая мощной судостроительной промышленностью Южная Корея предпочла закупить в Германии лицензию на постройку трех лодок типа 214. Их изготовление ведется фирмой Hyundai Heavy Industries; первая лодка Admiral Sohn Won-il была передана флоту в декабре 2007 г., а две другие – Jung Ji и Ahn Jung-geun планируется закончить постройкой в 2008 и 2009 гг., соответственно. В настоящее время в правительстве Южной Кореи следуют дебаты о целесообразности постройки еще трех ПЛ типа 214. Ценными особенностями лодок этого типа считаются возможность пуска крылатых ракет из торпедных аппаратов из-под воды и наличие двух электрохимических генераторов типа Siemens PEM мощностью по 120 кВт, что позволяет осуществлять движение под водой со скоростью 3…5 узлов на протяжении двух недель.

Свой вклад в создание воздухонезависимых энергетических установок для ПЛ внесли и французы. Так, группой фирм, входящих в кораблестроительный концерн DCN, для французской подводной лодки «Скорпен» (тип Agosta-90B, подводное водоизмещение 1760 т, длина 67 м) была разработана парогенераторная анаэробная ЭУ типа MESMA (Module D’Energie Sous Marine Autonome).

Три подводные лодки типа Agosta-90B были заказаны ВМС Пакистана в 1994 г. Две первые субмарины, Khalid (S137) и Saad (S138) первоначально не были оборудованы анаэробной ЭУ; головной лодкой с такой системой стала третья ПЛ – Hamza (S139).
Существуют проекты оснащения подлодок гибридными энергетическими установками с включением в их состав маломощных атомных реакторов. Подводные лодки, оснащенные малогабаритными ядерными реакторами, по существу, останутся дизельными. Эти установки фирма предполагает поставлять в виде отдельной секции, полностью подготовленной к врезке в корпуса существующих ПЛ или к сборке строящихся. Один из вариантов переоборудования предлагался применительно к подводным лодкам типа «Виктория».

Пожалуй, наиболее впечатляющих результатов в разработке анаэробных установок достиг шведский концерн Kockums Submarin Systems. На французской ПЛ Saga и шведской ПЛ Naecken типа А14 в процессе модернизации были смонтированы двигатели Стирлинга V4-275R, которые использовались в качестве вспомогательных энергетических установок для экономического подводного хода. При переоборудовании в прочный корпус лодки ПЛ Naecken непосредственно за ограждением рубки была сделана вставка длиной около 8 м с двумя двигателями Стирлинга мощностью по 110 кВт, осуществляющими привод генераторов постоянного тока. Запас жидкого кислорода позволял лодке Naecken находиться под водой без всплытия до 14 суток.

Затем концерн Kockums Submarin Systems сделал еще более впечатляющий шаг, построив в 1992-1996 гг. три ПЛ класса Gotland (тип А19). Энергетическая установка подлодок включала обычные дизели и два двигателя Стирлинга V4-275R мощностью по 75 кВт. Длина субмарин – 60,4 м, подводное водоизмещение – 1599 т.

Самый многообещающий проект шведов связан с перспективной подводной лодкой Viking. Это название выбрано не случайно. В реализации проекта должны участвовать еще две скандинавские страны – Норвегия и Дания. Фирма Kokums в содружестве с норвежской и датской судостроительными компаниями образовали консорциум для практической работы над проектом. Всего планировалось построить 12 субмарин нового поколения. По мнению ведущих специалистов, эта была бы лучшая неатомная подводная лодка начала XXI века. На ней планировалось установить единый двигатель Стирлинга большой мощности (ориентировочно 800 кВт). Однако сегодня судьба «Викинга» оказалась в руках Европейской судостроительной компании, контролируемой немецкими концернами. А они, разумеется, не слишком-то заинтересованы в успехе скандинавов, своих прямых конкурентов.

На помощь скандинавам нежданно-негаданно пришли японските ВМС, которые еще в 1997 г. спустили на воду субмарину S 589 Asashio, на которой в порядке эксперимента смонтировали два двигателя Стирлинга. После завершения цикла испытаний японские адмиралы приняли решение о постройке уже целой серии ПЛ класса Soryu, первая из которых должна вступить в строй в марте 2009 г. Эти лодки значительно крупнее немецких и шведских (подводное водоизмещение 4200 т, длина 84 м, экипаж 65 человек).

И наконец, последними из мировых держав окончательный выбор по типу анаэробной установки сделали американцы. Их решение однозначное – двигатели Стирлинга. Для этого в 2005 г. ВМС США взяли в лизинг шведскую подводную лодку типа Gotland, оснащенную вспомогательной воздухонезависимой установкой Стирлинга. Как сообщает журнал Jane’s Defence Weekly, субмарину предполагали использовать для отработки противолодочных операций кораблями американского флота. Лодка была приписана к военно-морской базе Сан-Диего (штат Калифорния), где находится Командование противолодочной войны. Отметим, что ВМС США в последнее время вновь стали проявлять повышенное внимание противолодочной обороне. Это объясняется стремительным ростом военно-морских сил Народно-освободительной армии Китая и, прежде всего, количественным увеличением и повышением качества подводного флота КНР.

Подводная лодка типа Gotland нужна США и для освоения современных технологий неатомного подводного судостроения, утраченных в Соединенных Штатах. В 2006 г. американская корпорация Northrop Grumman и шведская фирма Kokums, построившая ПЛ типа Gotland, подписали соглашение о сотрудничестве. В рамках этого сотрудничества американские специалисты получат возможность в деталях изучить конструкцию новейшей субмарины шведского флота. А помогут им в этом шведские моряки, которые будут нести службу на лодке вместе с американскими коллегами.

По мнению ведущих специалистов, субмарины с гибридными ЭУ уже в настоящее время по своим характеристикам не только приблизились к атомоходам, но по некоторым показателями даже превосходят их. Так, в ходе двух учений в Атлантике, прошедших в 2003 г., шведская подводная лодка Halland с анаэробными двигателями Стирлинга «победила» в дуэльной ситуации испанскую субмарину с обычной дизель-электрической установкой, а затем и французскую атомную лодку. Она же в Средиземном море одержала верх в «схватке» с американской атомной подводной лодкой Huston. При этом необходимо отметить, что малошумный и высокоэффективный Halland стоит в 4,5 раза дешевле своих атомных соперников.

Достоинства гибридных ЭУ

Учитывая приблизительно одинаковый уровень совершенства оружия и радиоэлектронного вооружения большинства ПЛ западноевропейских стран – основных поставщиков ПЛ на мировом рынке, конкурентоспособность перспективных ПЛ будет во многом определяться типом двигателя, примененного в анаэробной ЭУ.

От всех известных преобразователей энергии прямого цикла (дизелей, паровых и газовых турбин, карбюраторных двигателей внутреннего сгорания, ЭХГ и др.), которые могут использоваться в составе анаэробных установок, двигатели Стирлинга выгодно отличаются целым рядом качеств, которые обуславливают перспективу их применения на неатомных ПЛ: практическая бесшумность в работе из-за отсутствия взрывных процессов в цилиндрах двигателя и клапанного механизма газораспределения и достаточно плавного протекания рабочего цикла при относительно равномерном крутящем моменте, что напрямую влияет на акустическую скрытность ПЛ – главную составляющую обобщенного показателя – «скрытность ПЛ»; высокий к.п.д. (до 40 %), что значительно выше соответствующего показателя лучших образцов дизелей и карбюраторных ДВС; возможность использования в качестве горючего нескольких типов углеводородного топлива (соляровое топливо, сжиженный природный газ, керосин и др.); эксплуатация двигателей Стирлинга, работающих на традиционном топливе, не требует создания сложной береговой инфраструктуры (в отличие от электрохимических генераторов); моторесурс современных двигателей Стирлинга составляет 20…50 тыс. часов, что в 3…8 раз превышает срок жизни топливных элементов (около 6 тыс. часов); при сроке эксплуатации ПЛ порядка 25…30 лет применение двигателей Стирлинга позволит сократить необходимое количество подводных лодок на 35…40 % по сравнению с потребным числом лодок с электрохимическими генераторами (из-за более высокой надежности).

По мнению ряда иностранных и отечественных специалистов, двигатель Стирлинга является наиболее конкурентоспособным типом двигателя для анаэробных энергетических установок неатомных ПЛ в силу указанных выше преимуществ. Более того, если сегодня разрабатываются установки, увеличивающие подводную автономность до 30…45 суток на режимах экономического хода, то в недалеком будущем двигатель Стирлинга можно рассматривать как единый всережимный источник энергии, обеспечивающий как подводный, так и надводный ход во всем диапазоне нагрузок.

Преимущества двигателей Стирлинга по сравнению с другими преобразователями энергии прямого цикла позволяют рекомендовать его как универсальный двигатель для всех типов неатомных ПЛ малого, среднего и большого водоизмещения.

Отечественный ВМФ заинтересован в создании ПЛ с анаэробными ЭУ для использования их на Балтийском и Черном и морях, где использование атомоходов исключено по политическим мотивам. Общая потребность ВМФ в таких подлодках ориентировочно составляет 10-20 единиц. Весьма крупным рынком сбыта неатомных ПЛ с двигателями Стирлинга в недалеком будущем станет международный рынок вооружений, где начиная с 2005 гг. наблюдается устойчивое повышение спроса на подобные ПЛ со стороны стран Латинской Америки, Юго-Восточной Азии, Ближнего и Среднего Востока. В целом, ориентировочная рыночная ниша составляет от 300 до 400 ПЛ при средней стоимости ПЛ около $300…400 млн.

В настоящее время неатомные ПЛ входят в состав 30 флотов зарубежных стран. Учитывая, что срок службы этих лодок оценивается около 30 лет и то, что большинство из них было построено не позднее конца восьмидесятых годов минувшего века, можно ожидать, что с 2010 г. многие перечисленные страны задумаются о приобретении новых неатомных ПЛ вместо устаревших кораблей, исчерпавших свой ресурс.

Но самым перспективным оказалось направление, связанное с превращением химической энергии непосредственно в электрическую, без процесса горения или механического движения, иными словами с выработкой электрической энергии бесшумным способом. Речь идет об электрохимических генераторах. На практике такой способ нашел применение на современной германской подводной лодке U-212 . Компоновка анаэробной энергетической установки показана на рисунке 12.

Электромеханический генератор создан на базе топливныхэлементов. По сути это аккумуляторная батарея с постоянной подзарядкой. Физика его работы базируется на процессе, обратном электролизу воды, когда при соединении водорода с кислородом выделяется электроэнергия. При этом энергетическое превращение происходит бесшумно, а единственным побочным продуктом реакции является дистиллированная вода, которой достаточно легко найти применение на подводной лодке.

По критериям эффективности и безопасности водород хранится в связанном состоянии в форме металлогидрида (сплав металла в соединении с водородом), а кислород - в сжиженном виде в специальных емкостях между легким и прочным корпусами субмарины. Между водородным и кислородным катодами находятся полимерные электролитные мембраны протонного обмена, выполняющие функцию электролита.

Мощность одного элемента достигает 34 кВт, а КПД энергетической установки составляет до 70 процентов. Несмотря на очевидные преимущества разработанной установки на топливных элементах, она не обеспечивает требуемые оперативно-тактические характеристики подводной лодки океанского класса, прежде всего в части, касающейся выполнения скоростных маневров при преследовании цели или уклонении от торпедной атаки противника. Поэтому подводные лодки проекта 212 оснащены комбинированной двигательной установкой, в которой для движения на высоких скоростях под водой используются аккумуляторные батареи или топливные элементы, а для плавания в надводном положении - традиционный дизель-генератор, в состав которого входит 16-цилиндровый V-образный дизель и синхронный генератор переменного тока. Дизель генераторы используются также для подзарядки аккумуляторных батарей - традиционного элемента неядерных подводных лодок. Электрохимический генератор, состоящий из девяти модулей топливных элементов, имеет суммарную мощность 400 л. с. и обеспечивает движение подлодки в подводном положении со скоростью 3 узла в течение 20 суток с показателями шумности ниже уровня естественных шумов моря.

Комбинированные силовые установки

В последнее время стали популярны комбинированные силовые установки. Первоначально комбинированные энергетические установки породили желание обеспечить военным кораблям одновременно высокую скорость для боя большую дальность плавания для действий в удаленных районах Мирового океана. В частности, та на германских крейсерах времен второй мировой войны появилась комбинация котлотурбинной и дизельной энергетических установок. В 1960-е годы на кораблях появились газовые турбины, которые по своей экономичности и особенностям эксплуатации могли использоваться только кратковременно и на больших оборотах. Для компенсации этого недостатка их стали комбинировать с котлотурбинной (COSAG) или дизельной (CODAG) энергетической установкой. Несколько позже появились та называемые маршевые газовые турбин, к которым требовались форсажные турбины (COGAG). Только появление всережимных газовых турбин позволили перейти к однородной газотурбинной энергетической установке.

Бывают даже уникальные комбинации энергетических установок CODEAG (дизель-газотурбинная с полным электродвижением), которая встречается на фрегате «Duke » Королевских ВМС Великобритании. При его создании конструкторы исходили из необходимости обеспечить сверхнизкий уровень шумности на малых ходах при использовании буксируемой антенны гидроакустической системы, а также быстрый переход от малой скорости хода к высокой. Установка включает в себя две газовые турбины суммарной мощностью 31000 л. с., два гребных электродвигателя постоянного тока мощностью по 2000 л. с., встроенных в линии гребных валов и работающих от четырех дизель-генераторов суммарной мощностью 8100 л. с. Такая главная энергетическая установка работает в четырех режимах: малой скорости с минимальным уровнем шумности при отключенных главных редукторах; высокой скорости хода при работе газовых турбин на винты через редукторы совместно с гребными электродвигателями; промежуточной скорости при работе одной газовой турбины на один винт и одного гребного электродвигателя на другой винт при отключенном редукторе; маневрирование при использовании только дизелей. Винты работают на задний ход только от гребных электродвигателей.

«Зарубежное военное обозрение» № 6. 2004г. (стр.59-63)

Капитан 1 ранга Н. СЕРГЕЕВ,

капитан 1 ранга И. ЯКОВЛЕВ,

капитан 3 ранга С. ИВАНОВ

Подводные лодки с традиционной дизель-электрической энергетической установкой (ЭУ) являются достаточно эффективным средством для решения определенных им задач и имеют ряд преимуществ перед ПЛА, особенно при действиях в прибрежных и мелководных районах моря. К числу таких преимуществ относятся низкий уровень шумности, высокая маневренность на малых скоростях хода и соизмеримая с ПЛА ударная мощь. Кроме того, включение в состав ВМС неатомных ПЛ во многом обусловлено невысокой стоимостью их создания и эксплуатации. В то же время они имеют ряд недостатков, в частности ограниченное время пребывания в подводном положении в связи с небольшим запасом энергии в аккумуляторной батарее (АБ). Для зарядки АБ ПЛ вынуждена всплывать в надводное положение или использовать режим работы дизеля под водой (РДП), в результате чего повышается вероятность ее обнаружения радиолокационными, инфракрасными, оптико-электронными и акустическими средствами. Отношение времени плавания под РДП, необходимого для зарядки аккумуляторов, к периоду разряжания АБ называется «степенью неосторожности».

Существует несколько направлений увеличения дальности плавания под водой, основным из которых являются научно-технические и технологические разработки с целью совершенствования традиционной ЭУ неатомных ПЛ и ее составных элементов. Однако в современных условиях реализация этого направления не может в полной мере обеспечить решение главной задачи. Выход из сложившейся ситуации, по мнению зарубежных специалистов, заключается в использовании на ПЛ воздухонезависимой энергетической установки (ВНЭУ), которая может служить в качестве вспомогательной.

Успешные результаты, полученные в ходе работ по данной тематике, сделали возможным оборудование вспомогательными ВНЭУ вновь строящихся и дооборудование находящихся в эксплуатации дизель-электрических ПЛ. У последних в прочный корпус врезается дополнительный отсек, содержащий саму энергоустановку, емкости для хранения топлива и окислителя, цистерны замещения массы расходуемых реагентов, вспомогательные механизмы и оборудование, а также приборы контроля и управления. В дальнейшем ВНЭУ планируется использовать на ПЛ в качестве основной.

В настоящее время существуют четыре основных типа воздухонезависимых энергетических установок: дизельный двигатель замкнутого цикла (ДЗЦ), двигатель Стирлинга (ДС), топливные элементы или электрохимический генератор (ЭХГ) и паротурбинная установка замкнутого цикла.

К числу основных требований, предъявляемыми к ВНЭУ, относятся следующие: низкий уровень шумности, малое тепловыделение, приемлемые массогабаритные характеристики, простота и безопасность эксплуатации, большой ресурс и невысокая стоимость, возможность использовать существующую береговую инфраструктуру. В наибольшей мере данным требованиям удовлетворяют вспомогательные ЭУ с двигателем Стирлинга, ЭХГ и паротурбинной установкой замкнутого цикла. Поэтому в ВМС ряда стран ведутся активные работы по их практическому применению на неатомных ПЛ.

Энергетическая установка с двигателем Стирлинга. К ее разработке в 1982 году приступила шведская фирма «Кокумс марин АВ» по заказу правительства. Специалисты изначально рассматривали ВНЭУ с двигателем Стирлинга как вспомогательную, работающую совместно с традиционной дизель-электрической ЭУ (ДЭЭУ). Проведенные ими исследования показали, что новая установка, создаваемая как главная (без использования традиционной ДЭЭУ), будет слишком дорогой в производстве и технические требования, предъявляемые к энергоустановке подводной лодки, будет трудно удовлетворить.

Королевские ВМС Швеции выбрали ВНЭУ с двигателем Стирлинга по нескольким причинам: высокая удельная мощность, низкий уровень шумности, отработанность технологий производства ДС, надежность и простота эксплуатации.

Высокая удельная мощность ДС достигается за счет сжигания в камере сгорания дизельного топлива в сочетании с кислородом. На ПЛ необходимый запас кислорода хранится в жидком состоянии, что обеспечивается современными криогенными технологиями.

Двигатель Стирлинга является двигателем внешнего сгорания. Принцип его работы предусматривает использование тепла, вырабатываемого внешним источником, и его подвод к рабочему телу, находящемуся в замкнутом контуре. ДС превращает тепло, производимое внешним источником, в механическую энергию, которая затем преобразуется генератором в постоянный ток. Регенератор, входящий в состав замкнутого рабочего контура двигателя, забирает от рабочего тела тепловую энергию, образующуюся после его расширения, и возвращает ее назад в цикл, когда газ меняет направление.

В ДС применяются поршни двойного действия. Пространство над поршнем является полостью расширения, а пространство под поршнем - полостью сжатия. Полость сжатия каждого цилиндра внешним каналом через холодильник, регенератор и нагреватель связана с полостью расширения соседнего цилиндра. Необходимое сочетание фаз расширения и сжатия достигается с помощью распределительного механизма на основе кривошипов. Принципиальная схема двигателя Стирлинга приведена на рисунке.

Тепловая энергия, которая требуется для работы ДС, вырабатывается в камере сгорания высокого давления путем сжигания дизельного топлива и жидкого кислорода. Кислород и дизельное топливо в пропорции 4:1 поступают в камеру сгорания, где и происходит их сжигание.

Для того чтобы поддерживать необходимую температуру рабочего процесса и обеспечить достаточную термостойкость материалов, в конструкции ДС применяется специальная система рециркуляции газов (GRC). Эта система предназначена

для разбавления чистого кислорода, поступающего в камеру сгорания, газами, образующимися в процессе горения топливной смеси.

При работе двигателя Стирлинга часть выхлопных газов удаляется за борт, что может привести к образованию следа из пузырей. Это связано с тем, что процесс сгорания в ДС идет с большим избытком неиспользованного кислорода, который не может быть выделен из выхлопных газов. Для уменьшения количества пузырей, образующихся при растворении отработавших газов в забортной воде, применяется абсорбер, в котором происходит смешивание газов и воды. При этом выхлопные газы предварительно охлаждаются в специальном теплообменнике с 800 до 25 °С. Рабочее давление в камере сгорания позволяет удалять выхлопные газы на разных глубинах погружения ПЛ, вплоть до рабочей, что не требует использования для этих целей специального компрессора, обладающего повышенной шумностью.

Так как процесс внешнего подвода тепла неизбежно сопровождается дополнительными тепловыми потерями, КПД ДС меньше, чем у дизельного двигателя. Повышенная коррозия не позволяет использовать в ДС обычное дизельное топливо. Необходимо топливо с низким содержанием серы.

Для шведской программы был принят ДС типа V4-275 фирмы «Юнайтед Стерлинг». Он представляет собой четырехцилиндровый двигатель (рабочий объем каждого цилиндра 275 см3). Цилиндры расположены V-образно с целью снижения шума и вибрации. Рабочее давление в камере сгорания двигателя 2 МПа, благодаря чему обеспечивается его использование на глубинах погружения ПЛ до 200 м. Для работы двигателя на больших глубинах необходима компрессия выхлопных газов, что потребует дополнительного расхода мощности на удаление выхлопных газов и приведет к повышению уровня шумности.

Первой энергоустановкой на базе ДС была оборудована подводная лодка типа «Нэккен», спущенная на воду после модернизации в 1988 году. Двигатель Стирлинга, цистерны для хранения дизельного топлива, жидкого кислорода и вспомогательное оборудование были размещены в дополнительной секции с нулевой плавучестью, врезанной в прочный корпус ПЛ. За счет этого длина лодки увеличилась на 10 проц., что незначительно повлияло на изменение ее маневренных качеств.

Два ДС типа V4-275R работают на генераторы постоянного тока мощностью по 75 кВт. Двигатели размещены в шумоизоляционных модулях на виброизолирующих конструкциях с двухкаскадной амортизацией. Как показали испытания, ДС способен вырабатывать достаточное количество электроэнергии, необходимое для питания бортовых систем ПЛ, обеспечения подзарядки АБ и движения лодки со скоростью до 4 уз. Для достижения более высоких скоростей хода и питания главного гребного электродвигателя предусматривается использование двигателя совместно с АБ.

Благодаря применению комбинированной энергоустановки время плавания в подводном положении увеличилось с 3-5 до 14 сут, а скорость патрулирования - с 3 до 6 уз. В результате этого повысилась скрытность ПЛ.

Как утверждают шведские специалисты, двигатель Стирлинга в корабельных условиях продемонстрировал высокие надежность и ремонтопригодность. Его шумоизлучение не превосходит шума гребного электродвигателя и на 20-25 дБ ниже, чем у эквивалентного по мощности дизельного двигателя.

ВМС Швеции оснащают данной вспомогательной ВНЭУ ПЛ типа «Готланд». Контракт на строительство трех ПЛ этого типа был подписан правительством страны с фирмой «Кокумс» в марте 1990 года. Первая подводная лодка данной серии - «Готланд» - была принята на вооружение в 1996 году, две последующие: «Апланд» и «Халланд» - в 1997-м. В ходе модернизации планируется оборудовать вспомогательными ЭУ данного типа также ПЛ типа «Вэстерготланд».

Как сообщают иностранные источники, шведские подводные лодки, оснащенные ЭУ с ДС, уже на практике показали хорошие результаты. В частности, во время учений было доказано превосходство ПЛ «Халланд» над ПЛ ВМС Испании с традиционной дизель-электрической энергоустановкой, а также продемонстрированы ее улучшенные ТТХ в ходе совместного плавания с атомными подводными лодками ВМС США и Франции.

Энергетическая установка с ЭХГ. Электрохимический генератор - это установка, в которой химическая энергия топлива непосредственно превращается в электрическую. Основой ЭХГ являются топливные элементы (ТЭ), в которых и происходит процесс генерирования электроэнергии, возникающей при взаимодействии топлива и окислителя, непрерывно и раздельно подводимых к ТЭ. В принципе топливный элемент - разновидность гальванического. В отличие от последнего ТЭ не расходуется, так как активные компоненты подводятся непрерывно (топливо и окислитель).

В ходе исследований проводились испытания различных типов топлива и окислителей. Наилучших результатов удалось добиться при использовании реакции между кислородом и водородом, в результате взаимодействия которых вырабатываются электрическая энергия и вода.

Генерирование постоянного тока посредством холодного сгорания водорода и кислорода было известно давно и успешно использовалось для получения электроэнергии на подводных аппаратах. Этот принцип получения электроэнергии был использован на ПЛ только в 1980-е годы. В ПА кислород и водород хранились раздельно в прочных резервуарах под высоким давлением. Хотя электрохимические генераторы более эффективны, чем аккумуляторные батареи, их применение на ПЛ было затруднено тем, что запас топливных реагентов, хранящихся в газообразном состоянии, не позволял обеспечивать требуемую продолжительность подводного плавания.

Наиболее оптимальный способ хранения кислорода - в жидком состоянии (в криогенной форме - при температуре 180 °С), водорода - в форме металлгидрида.

К середине 1980-х годов немецкий консорциум GSC (German Submarine Consortium), включающий фирмы IKL (Ingenieurkontor Lubeck), HDW (Howaldtswerke Deutsche Werft AG) и FS (Ferrostaal), разработал и создал опытную береговую установку ЭХГ с топливными элементами фирмы «Сименс» для проверки совместной работы ее компонентов - топливных элементов, систем хранения водорода и кислорода, трубопроводов, системы управления, а также взаимодействия работы с традиционной ЭУ

ПЛ. Опытный образец ЭХГ был конструктивно выполнен с таким расчетом, чтобы по завершении испытаний он мог быть установлен на действующей ПЛ без доработок. Результаты береговых испытаний показали, что ЭУ с ЭХГ может быть эффективно использована на ПЛ.

В 1989 году в интересах ВМС ФРГ успешно закончилась девятимесячная серия морских испытаний ПЛ U-1 проекта 205, оборудованной вспомогательной ВНЭУ с ЭХГ на верфи HDW. В результате руководство этого вида ВС отказалось от дальнейшего строительства ПЛ только с дизель-электрической ЭУ и приняло решение использовать «гибридные» (ДЭЭУ как основная и вспомогательная ЭУ с ЭХГ). Дальнейшие исследования направлены на разработку таких установок с ЭХГ в качестве главной.

Конструктивно ЭХГ представляет собой электрохимические модули с полимерными мембранами (РЕМ). Все модули устанавливаются на единой раме и могут быть соединены как последовательно, так и параллельно.

Вспомогательными в ЭУ с ЭХГ являются система охлаждения с использованием забортной воды и система остаточных газов. Последняя обеспечивает дожигание остаточного водорода в системе вентиляции АБ и использование остаточного кислорода для бортовых нужд. Система управления ЭУ интегрирована с системой контроля безопасности, мониторы которой находятся в центральном посту.

Преобразование энергии в топливных элементах происходит бесшумно. В составе ЭУ отсутствуют узлы, совершающие вращательные или колебательные движения. Она имеет малое тепловыделение, вследствие чего не оказывает значительного влияния на формирование физических полей. Единственная вспомогательная система с вращающимися частями - система охлаждения, но она не настолько шумная, чтобы сильно повлиять на уровень акустического поля ПЛ.

Первоначальная активизация реакций в топливных элементах не требует много электроэнергии, для того чтобы металл-гидрид, хранящийся в баллонах, расположенных в междубортном пространстве, стал выделять водород и начал испаряться кислород, хранящийся в жидком состоянии в ударозащищенных криогенных цистернах, выполненных из маломагнитной стали.

Этот тип ЭУ достаточно эффективен, он имеет высокий КПД - до 70 проц., и по этому показателю значительно превосходит другие воздухонезависимые энергоустановки. Сравнительные данные зависимости КПД разных типов ВНЭУ от относительного уровня выходной мощности показаны на графике. Процесс преобразования энергии происходит при низкой рабочей температуре (60-90 °С). Для поддержания первоначально инициированного электрохимического процесса требуется небольшое количество тепла, выделяемого системой в процессе работы. Часть тепла, вырабатываемого ЭУ, может использоваться для бытовых нужд, таких как обогрев. Количество тепла, которое необходимо отводить от установки, невелико, поэтому принудительное охлаждение ЭУ забортной водой не требует длительного времени (до суток ее работы). Воду, производимую в ходе реакции, после соответствующей обработки можно использовать для питья.

Комбинация компактных топливных, последовательно соединенных элементов позволяет получить любое требуемое напряжение. Регулировка напряжения достигается изменением числа пластин в агрегатах с топливными элементами. Наибольшая мощность может быть достигнута посредством последовательного соединения этих элементов.

Работа ЭУ с ЭХГ не зависит от глубины погружения ПЛ. Электроэнергия, генерируемая такой энергоустановкой, поступает прямо на главный распределительный щит лодки. 65 проц. ее расходуется на движение и корабельные нужды, 30 проц. - на систему охлаждения и систему остаточных газов ЭУ, 5 проц. - на дополнительное оборудование ЭУ. Вспомогательная ЭУ может работать как параллельно с АБ, обеспечивая электродвижение ПЛ и питание других потребителей, так и для подзарядки АБ.

Планируется оснастить вспомогательной ЭУ с ЭХГ четыре и две ПЛ типа 212А, строящихся для ВМС ФРГ и Италии соответственно, а также экспортный вариант лодки типа 214 для ВМС Греции и Республики Корея.

Две ПЛ из первой подсерии лодок типа 212А для ВМС ФРГ оборудованы вспомогательной ЭУ с ЭХГ номинальной мощностью около 300 кВт с девятью топливными элементами по 34 кВт. Лодки второй подсерии планируется оснастить двумя топливными элементами по 120 кВт. Они будут иметь практически те же массогабаритные характеристики, что и топливные элементы мощностью 34 кВт, но при этом их эффективность увеличится в 4 раза. ПЛ типа 212А будет способна находиться в подводном положении в течение примерно двух недель. Номинальная мощность данной установки позволит развивать скорость хода до 8 уз без использования АБ.

Модульная конструкция ЭУ на основе топливных элементов не только облегчает их установку на строящихся ПЛ, но и позволяет оборудовать ими ранее построенные, даже те, которые были построены по лицензиям на верфях стран - импортеров немецких ПЛ.

Кроме того, такая ЭУ, как утверждают немецкие специалисты, отличается высокой ремонтопригодностью и более продолжительным сроком службы.

Паротурбинная установка (ПТУ) замкнутого цикла. ПТУ MESMA (Module d"Energie Sous-Marin Autonome), работающая по замкнутому циклу Ренкина, была разработана управлением кораблестроения ВМС Франции DCN для продажи на экспорт. В ее производстве участвуют французские фирмы «Текникатом», «Термодайн», «Эр ликвид», «Бертин», а также судоверфь «Эмпреса насьональ Базан» (Испания).

MESMA является двухконтурной установкой. В первом контуре в результате сгорания этанола в кислороде образуется теплоноситель (парогаз), который проходит через тракт парогенератора и отдает тепло воде, циркулирующей во втором контуре. Вода превращается в пар высокого давления, вращающий паровую турбину, соединенную с генератором. Кислород хранится на борту ПЛ в специальных емкостях в жидком состоянии. Продуктами реакции горения являются вода и отработанные газы, отводимые за борт. Это может привести к увеличению заметности ПЛ.

Горение в камере сгорания происходит под давлением 6 МПа, вследствие чего установка может работать на глубинах до 600 м, поэтому для удаления за борт продуктов горения не надо задействовать компрессор.

КПД энергоустановки с ПТУ MESMA составляет 20 проц., что обусловлено большими потерями при многократном преобразовании энергии - сжигание топлива, получение перегретого пара, генерация трехфазного тока и последующее его преобразование в постоянный.

Вся установка в целом отличается достаточной компактностью и монтируется в секции прочного корпуса длиной 10 м и шириной 7,8 м. Кислород хранится в сжиженном состоянии в баллонах, смонтированных на специальных амортизационных креплениях внутри прочного корпуса ПЛ в вертикальном положении.

В сентябре 1998 года завершились стендовые испытания опытного образца ЭУ MESMA. В апреле 2000 года на судоверфи в г. Шербур была изготовлена первая корабельная энергоустановка, размещенная в секции прочного корпуса. После завершения сдаточных испытаний модуль с ЭУ должен был быть отправлен в Пакистан для оснащения строящейся там по французской лицензии ПЛ «Гази» типа «Агоста 90В». Это первая ПЛ данного типа, на которой вспомогательная воздухонезависимая ЭУ будет установлена в процессе строительства. Две другие ПЛ, построенные ранее, намечается дооборудовать ими позже - в процессе модернизации и ремонта.

Применение вспомогательных воздухонезависимых энергетических установок на неатомных ПЛ позволило улучшить их ТТХ по продолжительности подводного плавания, что повысило скрытность лодок и расширило их боевые возможности. Помимо строящихся ПЛ вспомогательными ВНЭУ можно оборудовать имеющиеся дизельные подводные лодки в процессе их модернизации. Дальнейшее развитие технологий и получение на этой основе качественно новых характеристик ВНЭУ, вероятнее всего, позволит неатомным ПЛ решать задачи, свойственные атомным.

Для комментирования необходимо зарегистрироваться на сайте

Рендер подводной лодки проекта «Амур-950» с анаэробной энергетической установкой

ЦКБ МТ «Рубин»

Перспективная российская анаэробная энергетическая установка, которую планируется установить на опытовую подводную лодку проекта 677 «Лада» и новую неатомную субмарину проекта «Калина», получит батарею удвоенной мощности. Как пишет Mil.Press FlotProm, электрическая мощность усовершенствованной батареи составит сто киловатт вместо 50 у существующего сегодня образца. Разработку и испытания новой батареи для анаэробных энергетических установок подводных лодок планируется завершить к 2020 году.

Современные дизель-электрические подводные лодки имеют несколько преимуществ перед более крупными атомными подводными кораблями. Одним из главных таких преимуществ является практически полная бесшумность хода в подводном положении, поскольку в этом случае за движение корабля отвечают лишь тихие электромоторы, питающиеся от аккумуляторных батарей. Перезарядка этих батарей производится от дизельных генераторов в надводном положении или на глубине, с которой возможно выставить шноркель, специальную трубу, по которой воздух может подаваться к генераторам.

К недостаткам обычных дизель-электрических подводных лодок относится относительно небольшое время, которое корабль может провести под водой. В лучшем случае оно может достигать трех недель (для сравнения, у атомных подлодок этот показатель составляет 60-90 дней), после чего подлодке придется всплыть и запустить дизельные генераторы. Анаэробная энергетическая установка, для работы которой не нужен забортный воздух, позволит неатомной подводной лодке находиться в подводном положении существенно дольше. Например, подлодка проекта «Лада» с такой установкой может находиться под водой 45 суток.

Перспективная российская анаэробная энергетическая установка будет использовать для работы водород высокой степени очистки. Этот газ будут получать на борту корабля из дизельного топлива методом риформинга, то есть преобразования топлива в водородсодержащий газ и ароматические углеводороды, которые затем будут проходить через установку выделения водорода. Затем водород будет подаваться в водородно-кислородные топливные элементы, где и будет вырабатываться электричество для двигателей и бортовых систем.


Батарея БТЭ-50К-Э на испытательном стенде

Крыловский государственный научный центр

Батарея, иначе называемая электрохимическим генератором, разрабатывается Центральным научно-исследовательским институтом судовой электротехники и технологии. Эта батарея, вырабатывающая электричество за счет реакции водорода и кислорода, получила название БТЭ-50К-Э. Ее мощность составляет 50 киловатт. Мощность усовершенствованной батареи составит сто киловатт. Новая батарея будет входить в состав энергетических модулей перспективных неатомных подлодок мощностью 250-450 киловатт.

Помимо самих электрохимических элементов, иначе называемых водородными топливными ячейками, в состав таких модулей будут входить конверторы углеводородного топлива. Именно в них и будет проходить процесс риформинга дизельного топлива. Как рассказал изданию Mil.Press FlotProm один из разработчиков новой батареи, конвертор углеводородного топлива в настоящее время находится на стадии разработки. Ранее сообщалось, что разработку анаэробной энергетической установки для подводных лодок планируется завершить до конца 2018 года.

В феврале прошлого года исследователи из Технологического института Джорджии о разработке компактной четырехтактовой поршневой установки для каталитического риформинга метана и получения водорода. Новые установки могут быть объединены в цепь, тем самым повышая выход водорода. Установка достаточно компактна и не требует сильного нагрева. Реактор работает по четырехтактному циклу. На первом такте метан, смешанный с паром, через клапаны подается в цилиндр. При этом поршень в цилиндре плавно опускается. После того, как поршень достигает нижней точки, подача смеси перекрывается.

На втором такте поршень поднимается, сжимая смесь. Одновременно цилиндр подогревается до 400 градусов Цельсия. В условиях высокого давления и нагрева происходит процесс риформинга. По мере выделения водорода, он проходит через мембрану, которая останавливает углекислый газ, также образующийся во время риформинга. Углекислый газ при этом поглощается адсорбирующим материалом, смешанным с катализатором.

На третьем такте поршень опускается в самое нижнее положение, резко снижая давление в цилиндре. При этом углекислый газ высвобождается из адсорбирующего материала. Затем начинается четвертый такт, на котором в цилиндре открывается клапан, а поршень вновь начинает подниматься. Во время четвертого такта углекислый газ из цилиндра выдавливается в атмосферу. После четвертого такта цикл начинается снова.

Василий Сычёв

Российские разработчики приступили к испытаниям анаэробной энергетической установки для перспективных дизель-электрических подводных лодок; испытания проходят наземные прототипы. Об этом, как сообщает РИА Новости, заявил президент Объединенной судостроительной корпорации Алексей Рахманов. По его словам, в ближайшее время разработчики — центральное конструкторское бюро морской техники «Рубин», морское бюро машиностроения «Малахит» и Крыловский государственный научный центр — также планируют создать морской прототип анаэробной установки.

Современные дизель-электрические подводные лодки имеют несколько преимуществ перед более крупными атомными подводными кораблями. Одним из главных таких преимуществ является практически полная бесшумность хода в подводном положении, поскольку в этом случае за движение корабля отвечают лишь тихие электромоторы, питающиеся от аккумуляторных батарей. Перезарядка этих батарей производится от дизельных генераторов в надводном положении или на глубине, с которой возможно выставить шноркель, специальную трубу, по которой воздух может подаваться к генераторам.

К недостаткам обычных дизель-электрических подводных лодок относится относительно небольшое время, которое корабль может провести под водой. В лучшем случае оно может достигать трех недель, но обычно не превышает 7-10 дней. После этого подлодке необходимо всплыть и запустить дизельные генераторы. Анаэробная энергетическая установка, для работы которой не нужен забортный воздух, позволит неатомной подводной лодке находиться в подводном положении существенно дольше.

Испытания российской анаэробной энергетической установки для подводных лодок планируется завершить до конца 2021 года. Параллельно с ее разработкой и испытаниями специалисты занимаются оценкой экономической составляющей проекта — насколько будет дорогой установка в серийном производстве, в какую сумму будет обходиться ее эксплуатация и обслуживание, а также многие другие аспекты. «У любой работы должен быть экономический смысл. Как только мы его увидим, будем реализовывать», — ответил Рахманов.

Перспективная российская анаэробная энергетическая установка будет использовать для работы водород высокой степени очистки. Этот газ планируется получать на борту корабля из дизельного топлива методом риформинга, то есть преобразования топлива в водородсодержащий газ и ароматические углеводороды, которые затем будут проходить через установку выделения водорода. Затем водород будет подаваться в водородно-кислородные топливные элементы, где и будет вырабатываться электричество для двигателей и бортовых систем.

Топливные элементы разрабатываются Центральным научно-исследовательским институтом судовой электротехники и технологии. Водородные батареи, вырабатывающие электричество за счет реакции водорода и кислорода, получили название БТЭ-50К-Э. Мощность одного такого элемента составляет 50 киловатт. Мощность усовершенствованной батареи составит 100 киловатт. Новая батарея будет входить в состав энергетических модулей перспективных неатомных подлодок мощностью 250-450 киловатт.

Помимо самих электрохимических элементов в состав таких модулей будут входить конверторы углеводородного топлива. Именно в них и будет проходить процесс риформинга дизельного топлива. Конвертор углеводородного топлива пока еще находится на стадии разработки.

В конце сентября судостроительный завод «Адмиралтейские верфи» спустил на воду дизель-электрическую подводную лодку «Кронштадт», первый серийный корабль проекта 677 «Лада». Ожидается, что подводная лодка пройдет полную серию испытаний и будет передана российскому флоту до конца 2019 года. Проект 677 в перспективе предусматривает установку на подлодки анаэробных энергетических установок. Кроме того, такие энергетические установки планируется использовать на перспективных дизель-электрических подводных лодках пятого поколения проекта «Калина».